A novel method relying on atomic force microscope (AFM) tip based nanomachining is presented to enable the fabrication of microchannels that exhibit complex three-dimensional (3D) nanoscale floor surface geometries. To achieve this, reciprocating lateral displacements of the tip of an AFM probe are generated, while a high-precision stage is also actuated to move in a direction perpendicular to such tip motions. The width and length of microchannels machined in this way are determined by the amplitude of the tip motion and the stage displacement, respectively. Thus, the processing feed can be changed during the process as it is defined by the combined control of the frequency of the tip reciprocating motions and the stage speed. By employing the built-in force feedback loop of conventional AFM systems during such operations, the variation of the feed leads to different machined depths. Thus, this results in the capability to generate complex 3D nanostructures, even for a given normal load, which is set by the AFM user prior to the start of the process. In this paper, the fabrication of different microchannels with floor surfaces following half triangular, triangular, sinusoidal, and top-hat waveforms is demonstrated. It is anticipated that this method could be employed to fabricate complex nanostructures more readily compared to traditional vacuum-based lithography processes.

References

1.
Abraham
,
D. S.
,
Stephan
,
K. W. D.
,
Armand
,
A.
,
Lgor
,
M.
,
Howard
,
A. S.
, and
George
,
M. W.
,
2002
, “
Chaotic Mixer for Microchannels
,”
Science
,
295
(5555), pp.
647
651
.
2.
Feng
,
X.
,
Ren
,
Y.
, and
Jiang
,
H.
,
2014
, “
Effect of the Crossing-Structure Sequence on Mixing Performance Within Three-Dimensional Micromixers
,”
Biomicrofluidics
,
8
(
3
), p.
034106
.
3.
Zhou
,
Q.
, and
Kim
,
T.
,
2016
, “
Review of Microfluidic Approaches for Surface-Enhanced Raman Scattering
,”
Sens. Actuators B
,
227
, pp.
504
514
.
4.
Zhou
,
Y. S.
,
Zhu
,
G.
,
Niu
,
S.
,
Liu
,
Y.
,
Bai
,
P.
,
Jing
,
Q.
, and
Wang
,
Z. L.
,
2014
, “
Nanometer Resolution Self-Powered Static and Dynamic Motion Sensor Based on Micro-Grated Triboelectrification
,”
Adv. Mater.
,
26
(
11
), pp.
1719
1724
.
5.
Sinha
,
P. M.
,
George
,
V.
,
Sadhana
,
S.
,
Liu
,
X.
, and
Mauro
,
F.
,
2004
, “
Nanoengineered Device for Drug Delivery Application
,”
Nanotechnology
,
15
(
10
), pp.
S585
S589
.
6.
Jeroen
,
H.
,
Haneveld
,
J.
,
Erwin
,
B.
,
Niels
,
T.
, and
Miko
,
E.
,
2003
, “
Wet Anisotropic Etching for Fluidic 1D Nanochannels
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
S62
S66
.
7.
Yan
,
Y.
,
Geng
,
Y.
, and
Hu
,
Z.
,
2015
, “
Recent Advances in AFM Tip-Based Nanomechanical Machining
,”
Int. J. Mach. Tools Manuf.
,
99
, pp.
1
18
.
8.
Tseng
,
A. A.
,
2011
, “
Removing Material Using Atomic Force Microscopy With Single- and Multiple-Tip Sources
,”
Small
,
7
(
24
), pp.
3409
3427
.
9.
Pires
,
D.
,
Hedrick
,
J. L.
,
De Silva
,
A.
,
Frommer
,
J.
,
Gotsmann
,
B.
,
Wolf
,
H.
,
Despont
,
M.
,
Duerig
,
U.
, and
Knoll
,
A. W.
,
2010
, “
Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes
,”
Science
,
328
(
5979
), pp.
732
735
.
10.
Guo
,
J.
,
Yu
,
B.
,
Chen
,
L.
, and
Qian
,
L.
,
2015
, “
Nondestructive Nanofabrication on Si(100) Surface by Tribochemistry-Induced Selective Etching
,”
Sci. Rep.
,
5
, p.
16472
.
11.
Guo
,
J.
,
Xiao
,
C.
,
Peng
,
B.
, and
Qian
,
L.
,
2015
, “
Tribochemistry-Induced Direct Fabrication of Nondestructive Nanochannels on Silicon Surface
,”
RSC Adv.
,
5
(
122
), p.
100769
.
12.
D'Acunto
,
M.
,
Napolitano
,
S.
,
Pingue
,
P.
,
Giusti
,
P.
, and
Rolla
,
P.
,
2007
, “
Fast Formation of Ripples Induced by AFM. A New Method for Patterning Polymers on Nanoscale
,”
Mater. Lett.
,
61
(
14–15
), pp.
3305
3309
.
13.
Yan
,
Y. D.
,
Hu
,
Z. J.
,
Zhao
,
X. S.
,
Sun
,
T.
,
Dong
,
S.
, and
Li
,
X. D.
,
2010
, “
Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy
,”
Small
,
6
(
6
), pp.
724
728
.
14.
Yan
,
Y. D.
,
Sun
,
Y.
,
Li
,
J. R.
,
Hu
,
Z. J.
, and
Zhao
,
X. S.
,
2014
, “
Controlled Nanodot Fabrication by Rippling Polycarbonate Surface Using an AFM Diamond Tip
,”
Nanoscale Res. Lett.
,
9
(
1
), p.
372
.
15.
Yan
,
Y. D.
,
Geng
,
Y. Q.
,
Hu
,
Z. J.
,
Zhao
,
X. S.
,
Yu
,
B. W.
, and
Zhang
,
Q.
,
2014
, “
Fabrication of Nanochannels With Ladder Nanostructure at the Bottom Using AFM Nanoscratching Method
,”
Nanoscale Res. Lett.
,
9
(
1
), p.
212
.
16.
Yu
,
B. W.
,
Geng
,
Y. Q.
,
Yan
,
Y. D.
, and
Hu
,
Z. J.
,
2014
, “
Fabrication of Nanochannels With Complex Three-Dimensional Structures Based on a Modified Atomic Force Microscopy Nanoscratching System
,”
Micro Nano Lett.
,
9
(
10
), pp.
707
711
.
17.
Dongmo
,
L. S.
,
Villarrubia
,
J. S.
,
Jones
,
S. N.
,
Renegar
,
T. B.
,
Postek
,
M. T.
, and
Song
,
J. F.
,
2000
, “
Experimental Test of Blind Tip Reconstruction for Scanning Probe Microscopy
,”
Ultramicroscopy
,
85
(
3
), pp.
141
153
.
18.
Geng
,
Y.
,
Yan
,
Y.
,
Xing
,
Y.
,
Zhao
,
X.
, and
Hu
,
Z.
,
2013
, “
Modelling and Experimental Study of Machined Depth in AFM-Based Milling of Nanochannels
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
87
96
.
19.
Kawasegi
,
N.
,
Takano
,
N.
,
Oka
,
D.
,
Morita
,
N.
,
Yamada
,
S.
,
Kanda
,
K.
,
Takano
,
S.
,
Obata
,
T.
, and
Ashida
,
K.
,
2006
, “
Nanomachining of Silicon Surface Using Atomic Force Microscope With Diamond Tip
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
723
729
.
20.
Geng
,
Y. Q.
,
Yan
,
Y. D.
,
Zhao
,
X. S.
,
Hu
,
Z. J.
,
Liang
,
Y. C.
,
Sun
,
T.
, and
Dong
,
S.
,
2013
, “
Fabrication of Millimetre Scale Nanochannels Using the AFM Tip-Based Nanomachining Method
,”
Appl. Surf. Sci.
,
266
, pp.
386
394
.
21.
Geng
,
Y.
,
Zhang
,
J.
,
Yan
,
Y.
,
Yu
,
B.
,
Geng
,
L.
, and
Sun
,
T.
,
2015
, “
Experimental and Theoretical Investigation of Crystallographic Orientation Dependence of Nanoscratching of Single Crystalline
,”
PLoS One
,
10
(
7
), p.
e0131886
.
You do not currently have access to this content.