Specialized elastomeric tooling (SET) is a patented process that can replace autoclaving for consolidating and curing advanced thermoset and thermoplastic composite parts. The process mimics autoclave conditions of uniform pressure and temperature by clamping an uncured laminate or sandwich structure with known force between a temperature-controlled lower tool and an engineered, rubber-faced upper tool. Several published studies involving small- to medium-sized parts have shown that SET provides equal or better quality, but at fraction of the energy, waste, and capital and consumable costs. The elastomer of choice for the upper tool is a castable, platinum-catalyzed silicone rubber because of its high working temperature, high tear strength, and negligible shrinkage. To date, there is limited understanding about the properties of silicone rubber subjected to high temperature and compression for long periods of time over multiple cycles. This paper discusses recent work that characterizes silicone rubber under these conditions for design and simulation purposes. Compression testing performed per ASTM-D575 exhibited linear behavior at 125 °C (typical processing temperature for epoxy resins), whereas tensile testing (per ASTM-D412) at the same temperature exhibited strain softening. To show the repeated effect of compression on rubber properties (i.e., mimic multiple loading cycles on rubber mask) at typical process temperature (125 °C) and pressure, a fatigue testing apparatus was custom designed and fabricated. Over repeated cycles between 0 and 1.35 MPa (typical consolidation pressure for advanced composites), silicone rubber exhibited slight hysteresis and a minor stiffening effect that appears to plateau at a particular modulus. Static and kinetic frictional coefficients, also used in modeling, between silicone rubber and several materials commonly used in SET ranged from 0.5 to 2.4 (per ASTM-D1984). Finally, pressure injection and in-line mixing of uncured rubber resulted in significantly less entrained air bubbles (and resulting surface defects in contact with composite part) than the current standard practice of hand mixing. Results are applicable to both SET and any advanced composite forming or curing/consolidation processes involving rubber-faced tools.
Skip Nav Destination
Article navigation
February 2016
Research-Article
Silicone Rubber Properties During Consolidation/Curing of Advanced Composites Using Specialized Elastomeric Tooling
Paul Malek,
Paul Malek
Center for Automation Technologies and Systems,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: paulvmalek@gmail.com
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: paulvmalek@gmail.com
Search for other works by this author on:
Daniel Walczyk
Daniel Walczyk
Fellow ASME
Center for Automation Technologies and Systems,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: walczd@rpi.edu
Center for Automation Technologies and Systems,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: walczd@rpi.edu
Search for other works by this author on:
Paul Malek
Center for Automation Technologies and Systems,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: paulvmalek@gmail.com
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: paulvmalek@gmail.com
Daniel Walczyk
Fellow ASME
Center for Automation Technologies and Systems,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: walczd@rpi.edu
Center for Automation Technologies and Systems,
Rensselaer Polytechnic Institute,
110 8th Street,
Troy, NY 12180
e-mail: walczd@rpi.edu
1Corresponding author.
Contributed by the Manufacturing Engineering Division of ASME for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received November 12, 2014; final manuscript received April 10, 2015; published online September 9, 2015. Assoc. Editor: Donggang Yao.
J. Manuf. Sci. Eng. Feb 2016, 138(2): 021002 (7 pages)
Published Online: September 9, 2015
Article history
Received:
November 12, 2014
Revision Received:
April 10, 2015
Citation
Malek, P., and Walczyk, D. (September 9, 2015). "Silicone Rubber Properties During Consolidation/Curing of Advanced Composites Using Specialized Elastomeric Tooling." ASME. J. Manuf. Sci. Eng. February 2016; 138(2): 021002. https://doi.org/10.1115/1.4030432
Download citation file:
Get Email Alerts
Cited By
A Differentiable Physics-Informed Machine Learning Approach to Model Laser-Based Micro-Manufacturing Process
J. Manuf. Sci. Eng (May 2025)
Additive Manufacturing of Wheat Straw Fibers for Sustainable Thermal Insulation Application
J. Manuf. Sci. Eng (May 2025)
Repurposing Supply Chains and Process Planning Across Products Using a Similarity Model Based on Supernetworks
J. Manuf. Sci. Eng (May 2025)
Related Articles
Microindentation Test for Assessing the Mechanical Properties of Silicone Rubber Exposed to a Simulated Polymer Electrolyte Membrane Fuel Cell Environment
J. Fuel Cell Sci. Technol (November,2009)
Rapid Consolidation and Curing of Vacuum-Infused Thermoset Composite Parts
J. Manuf. Sci. Eng (February,2017)
The Effect of Electron Beam Irradiation on Elastomers Used in Tooling for Composites Manufacturing
J. Manuf. Sci. Eng (June,2021)
Related Proceedings Papers
Related Chapters
Nonmetallic Pressure Piping System Components 1 Part A: Experience With Nonmetallic Materials in Structural/Pressure Boundary Applications
Companion Guide to the ASME Boiler and Pressure Vessel Codes, Volume 1, Fifth Edition
Materials
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition
Nonmetallic Pressure Piping System Components Part A: Experience With Nonmetallic Materials in Structural/Pressure Boundary Applications
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes