In the last decades, numerical simulation has gradually extended its applicability in the field of sheet metal forming. Constitutive modeling and formability are two domains closely related to the development of numerical simulation tools. This paper is focused, on the one hand, on the presentation of new phenomenological yield criteria developed in the last decade, which are able to describe the anisotropic response of sheet metals, and, on the other hand, on new models and experiments to predict/determine the forming limit curves.

References

1.
Banabic
,
D.
,
2000
, “
Anisotropy of Sheet Metal
,”
Formability of Metallic Materials
,
D.
Banabic
, ed.,
Springer Verlag
,
Heidelberg, Germany
, pp.
119
172
.
2.
Barlat
,
F.
,
Banabic
,
D.
, and
Cazacu
,
O.
,
2002
, “
Anisotropy in Sheet Metals
,”
Numerical Simulation of 3-D Sheet Metal Forming Processes
,
D. Y.
Yang
, ed.,
Korea Advanced Inst. of Science and Technology (KAIST)
,
Jeju Island, South Korea
, pp.
515
524
.
3.
Barlat
,
F.
,
Cazacu
,
O.
,
Zyczkowski
,
M.
,
Banabic
,
D.
, and
Yoon
,
J.-W.
,
2004
, “
Yield Surface Plasticity and Anisotropy
,”
Continuum Scale Simulation of Engineering Materials
,
D.
Raabe
,
L.-Q.
Chen
,
F.
Barlat
, and
F.
Roters
, eds.,
Wiley-VCH
,
Weinheim, Germany
, pp.
145
185
.
4.
Banabic
,
D.
, and
Tekkaya
,
E. A.
,
2006
, “
Forming Simulation
,”
Virtual Fabrication of Aluminum Alloys
,
J.
Hirsch
, ed.,
Wiley-VCH
,
Weinheim, Germany
, pp.
275
302
.
5.
Banabic
,
D.
,
Barlat
,
F.
,
Cazacu
,
O.
, and
Kuwabara
,
T.
,
2007
, “
Anisotropy and Formability
,”
Advances in Material Forming-ESAFORM 10 Years On
,
F.
Chinesta
and
E.
Cueto
, eds.,
Springer
,
Heidelberg, Germany
, pp.
143
173
.
6.
Banabic
,
D.
,
2010
,
Sheet Metal Forming Processes
,
Springer
,
Heidelberg
(in Chinese, Science Press, Beijing, 2015).
7.
Banabic
,
D.
,
Barlat
,
F.
,
Cazacu
,
O.
, and
Kuwabara
,
T.
,
2010
, “
Advances in Anisotropy and Formability
,”
Int. J. Mater. Form.
,
3
(
3
), pp.
165
189
.
8.
Lee
,
M. G.
, and
Barlat
,
F.
,
2014
, “
Modeling of Plastic Yielding, Anisotropic Flow and the Bauschinger Effect
,”
Comprehensive Materials Processing
,
S.
Hashmi
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
235
260
.
9.
Brosius
,
A.
, and
Banabic
,
D.
,
2014
, “
Anisotropy
,”
Encyclopedia of Production Engineering
,
L.
Laperrière
and
G.
Reinhart
, eds.,
Springer
,
Heidelberg, Berlin, Germany
, pp.
40
47
.
10.
Banabic
,
D.
,
2014
, “
Fliessortkriteria
,”
Blechumformtechnik
,
K.
Siegert
, ed.,
Springer
,
Heidelberg, Berlin, Germany
.
11.
Bruschi
,
S.
,
Altan
,
T.
,
Banabic
,
D.
,
Bariani
,
P. F.
,
Brosius
,
A.
,
Cao
,
J.
,
Ghiotti
,
A.
,
Khraisheh
,
M.
,
Merklein
,
M.
, and
Tekkaya
,
E.
,
2014
, “
Testing and Modeling of Material Behavior and Formability in Sheet Metal Forming Processes (Keynote Paper)
,”
Ann. CIRP
,
63
(
2
), pp.
727
749
.
12.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
,
193
(
1033
), pp.
281
297
.
13.
Woodthrope
,
J.
, and
Pearce
,
R.
,
1970
, “
Anomalous Behaviour of Aluminium Sheet Under Balanced Biaxial Tension
,”
Int. J. Mech. Sci.
,
12
(
4
), pp.
341
347
.
14.
Hill
,
R.
,
1979
, “
Theoretical Plasticity of Textured Aggregates
,”
Math. Proc. Cambridge Philos. Soc.
,
85
(
1
), pp.
179
191
.
15.
Hill
,
R.
,
1990
, “
Constitutive Modelling of Orthotropic Plasticity in Sheet Metals
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
405
417
.
16.
Hill
,
R.
,
1993
, “
A User-Friendly Theory of Orthotropic Plasticity in Sheet Metals
,”
Int. J. Mech. Sci.
,
35
(
1
), pp.
19
25
.
17.
Hershey
,
A. V.
,
1954
, “
The Plasticity of an Isotropic Aggregate of Anisotropic Face Centred Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
, pp.
241
249
.
18.
Hosford
,
W. F.
,
1979
, “
On Yield Loci of Anisotropic Cubic Metals
,”
7th North American Metalworking Conference
, Dearborn, MI, pp.
191
197
.
19.
Logan
,
R. W.
, and
Hosford
,
W. F.
,
1980
, “
Upper-Bound Anisotropic Yield Locus Calculations Assuming Pencil Glide
,”
Int. J. Mech. Sci.
,
22
(
7
), pp.
419
430
.
20.
Barlat
,
F.
, and
Lian
,
J.
,
1989
, “
Plastic Behavior and Stretchability of Sheet Metals. Part 1: A Yield Function for Orthotropic Sheets Under Plane Stress Conditions
,”
Int. J. Plast.
,
5
(
1
), pp.
51
56
.
21.
Gotoh
,
M.
,
1977
, “
Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)
,”
Int. J. Mech. Sci.
,
19
(
9
), pp.
505
512
.
22.
Budiansky
,
B.
,
1984
, “
Anisotropic Plasticity of Plane-Isotropic Sheets
,”
Mechanics of Material Behaviour
,
G. J.
Dvorak
and
R. T.
Shield
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
15
29
.
23.
Tourki
,
Z.
,
Makkouk
,
R.
,
Zeghloul
,
A.
, and
Ferron
,
G.
,
1994
, “
Orthotropic Plasticity in Sheet Metals
,”
J. Mater. Processes Technol.
,
45
(
1–4
), pp.
453
458
.
24.
Barlat
,
F.
,
Lege
,
D. J.
, and
Brenz
,
J. C.
,
1991
, “
A 6-Component Yield Function for Anisotropic Materials
,”
Int. J. Plast.
,
7
(
7
), pp.
693
712
.
25.
Barlat
,
F.
,
Becker
,
R. C.
,
Hayashida
,
Y.
,
Maeda
,
Y.
,
Yanagawa
,
M.
,
Chung
,
K.
,
Brem
,
J. C.
,
Lege
,
D. J.
,
Matsui
,
K.
,
Murtha
,
S. J.
, and
Hattori
,
S.
,
1997
, “
Yielding Description of Solution Strengthened Aluminum Alloys
,”
Int. J. Plast.
,
13
(
4
), pp.
185
401
.
26.
Barlat
,
F.
,
Maeda
,
Y.
,
Chung
,
K.
,
Yanagawa
,
M.
,
Brem
,
J. C.
,
Hayashida
,
Y.
,
Lege
,
D. J.
,
Matsui
,
K.
,
Murtha
,
S. J.
,
Hattori
,
S.
,
Becker
,
R. C.
, and
Makosey
,
S.
,
1997
, “
Yield Function Development for Aluminum Alloy Sheets
,”
J. Mech. Phys. Solids
,
45
(
11–12
), pp.
1727
1763
.
27.
Karafillis
,
A. P.
, and
Boyce
,
M. C.
,
1993
, “
A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1859
1886
.
28.
Bron
,
F.
, and
Besson
,
J.
,
2004
, “
A Yield Function for Anisotropic Materials
,”
Int. J. Plast.
,
20
(
4–5
), pp.
937
963
.
29.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Lege
,
D. J.
,
Pourboghrat
,
F.
,
Choi
,
S.-H.
, and
Chu
,
E.
,
2003
, “
Plane Stress Yield Function for Aluminium Alloy Sheets: Formulation
,”
Int. J. Plast.
,
19
(
9
), pp.
1297
1319
.
30.
Barlat
,
F.
,
Aretz
,
H.
,
Yoon
,
J. W.
,
Karabin
,
M. E.
,
Brem
,
J. C.
, and
Dick
,
R. E.
,
2005
, “
Linear Transformation-Based Anisotropic Yield Functions
,”
Int. J. Plast.
,
21
(
5
), pp.
1009
1039
.
31.
Aretz
,
H.
, and
Barlat
,
F.
,
2013
, “
New Convex Yield Functions for Orthotropic Metal Plasticity
,”
Int. J. Non-Linear Mech.
,
51
, pp.
97
111
.
32.
Yoon
,
J. W.
,
Barlat
,
F.
,
Dick
,
R. E.
, and
Karabin
,
M. E.
,
2006
, “
Prediction of Six or Eight Ears in a Drawn Cup Based on a New Anisotropic Yield Function
,”
Int. J. Plast.
,
22
(
1
), pp.
174
193
.
33.
Cazacu
,
O.
, and
Barlat
,
F.
,
2001
, “
Generalization of Drucker's Yield Criterion to Orthotropy
,”
Math. Mech. Solids
,
6
(
6
), pp.
613
630
.
34.
Drucker
,
D. C.
,
1949
, “
Relation of Experiments to Mathematical Theories of Plasticity
,”
ASME J. Appl. Mech.
,
16
, pp.
349
357
.
35.
Cazacu
,
O.
, and
Barlat
,
F.
,
2003
, “
Application of the Theory of Representation to Describe Yielding of Anisotropic Aluminum Alloys
,”
Int. J. Eng. Sci.
,
41
(
12
), pp.
1367
1385
.
36.
Liu
,
C.
,
Huang
,
Y.
, and
Stout
,
M. G.
,
1997
, “
On the Asymmetric Yield Surface of Plastically Orthotropic Materials: A Phenomenological Study
,”
Acta Mater.
,
45
(
6
), pp.
2397
2406
.
37.
Cazacu
,
O.
,
Plunkett
,
B.
, and
Barlat
,
F.
,
2006
, “
Orthotropic Yield Criterion for Hexagonal Close Packed Metals
,”
Int. J. Plast.
,
22
(
7
), pp.
1171
1194
.
38.
Vegter
,
H.
,
Drent
,
P.
, and
Huetink
,
J.
,
1988
, “
A Planar Isotropic Yield Criterion Based on Material Testing at Multiaxial Stress State
,”
Simulation of Materials Processing: Theory, Methods and Applications
,
S. F.
Shen
and
P. R.
Dawson
, eds.,
Balkema
,
Rotterdam, The Netherlands
, pp.
345
350
.
39.
Vegter
,
H.
, and
van den Boogaard
,
A. H.
,
2006
, “
A Yield Function for Anisotropic Sheet Material by Interpolation of Biaxial Stress States
,”
Int. J. Plast.
,
22
(
3
), pp.
557
580
.
40.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
Oxford, UK
.
41.
Comsa
,
D. S.
, and
Banabic
,
D.
,
2007
, “
Numerical Simulation of Sheet Metal Forming Processes Using a New Yield Criterion
,”
Key Eng. Mater.
,
344
, pp.
833
840
.
42.
Soare
,
S.
,
Yoon
,
J. W.
, and
Cazacu
,
O.
,
2008
, “
On the Use of Homogeneous Polynomials to Develop Anisotropic Yield Functions With Applications to Sheet Forming
,”
Int. J. Plast.
,
24
(
6
), pp.
915
924
.
43.
Banabic
,
D.
,
Aretz
,
H.
,
Comsa
,
D. S.
, and
Paraianu
,
L.
,
2005
, “
An Improved Analytical Description of Orthotropy in Metallic Sheets
,”
Int. J. Plast.
,
21
(
3
), pp.
493
512
.
44.
Banabic
,
D.
,
Comsa
,
D. S.
, and
Balan
,
T.
,
2000
, “
A New Yield Criterion for Orthotropic Sheet Metals Under Plane Stress Conditions
,” 7th
TPR
2000 Conference
, May 11–12,
D.
Banabic
, ed., Printek Publishing House, Cluj Napoca, Romania, pp.
217
224
.
45.
Banabic
,
D.
,
Kuwabara
,
T.
,
Balan
,
T.
,
Comsa
,
D. S.
, and
Julean
,
D.
,
2003
, “
Non-Quadratic Yield Criterion for Orthotropic Sheet Metals Under Plane-Stress Conditions
,”
Int. J. Mech. Sci.
,
45
(
5
), pp.
797
811
.
46.
Banabic
,
D.
, and
Sester
,
M.
,
2012
, “
Influence of Material Models on the Accuracy of the Sheet Forming Simulation
,”
Mater. Manuf. Processes
,
27
, pp.
304
308
.
47.
Lăzărescu
,
L.
,
Ciobanu
,
I.
,
Nicodim
,
I.
,
Comşa
,
D. S.
, and
Banabic
,
D.
,
2013
, “
Effect of the Mechanical Parameters Used as Input Data in the Yield Criteria on the Accuracy of the FE Simulation of Sheet Metal Forming Processes
,”
Key Eng. Mater.
,
554–557
, pp.
204
209
.
48.
Comsa
,
D. S.
, and
Banabic
,
D.
,
2008
, “
Plane-Stress Yield Criterion for Highly-Anisotropic Sheet Metals
,”
Numisheet 2008 Conference
, Interlaken, Switzerland, Sept. 1–5, pp.
43
48
.
49.
Barlat
,
F.
, and
Richmond
,
O.
,
1987
, “
Prediction of Tricomponent Plane Stress Yield Surfaces and Associated Flow and Failure Behaviour of Strongly Textured FCC Polycrystalline Sheets
,”
Mater. Sci. Eng.
,
91
, pp.
15
29
.
50.
Vrh
,
M.
,
Halilovič
,
M.
,
Starman
,
B.
,
Štok
,
B.
,
Comsa
,
D. S.
, and
Banabic
,
D.
,
2011
, “
Earing Prediction in Cup Drawing Using the BBC2008 Yield Criterion
,”
AIP Conf. Proc.
,
1383
, pp.
142
150
.
51.
Gawad
,
J.
,
Banabic
,
D.
,
Van Bael
,
A.
,
Comsa
,
D. S.
,
Gologanu
,
M.
,
Eyckens
,
P.
,
Van Houtte
,
P.
, and
Roose
,
D.
,
2015
, “
An Evolving Plane Stress Yield Criterion Based on Crystal Plasticity Virtual Experiments
,”
Int. J. Plast.
,
75
, pp.
141
169
.
52.
Van Houtte
,
P.
,
Saiyi
,
L.
,
Seefeld
,
M.
, and
Delannay
,
L.
,
2005
, “
Deformation Texture Prediction: From the Taylor Model to the Advanced Lamel Model
,”
Int. J. Plast.
,
21
(
3
), pp.
589
624
.
53.
Lian
,
J.
,
Barlat
,
F.
, and
Baudelet
,
B.
,
1989
, “
Plastic Behaviour and Stretchability of Sheet Metals: Effect of Yield Surface Shape on Sheet Forming Limit
,”
Int. J. Plast.
,
5
(
2
), pp.
131
147
.
54.
Paraianu
,
L.
,
Comsa
,
D. S.
,
Ciobanu
,
I. I.
, and
Banabic
,
D.
,
2012
, “
Effect of the Constitutive Law on the Accuracy of Prediction of the Forming Limit Curves
,”
Key Eng. Mater.
,
504–506
, pp.
77
82
.
55.
Jurco
,
P.
, and
Banabic
,
D.
,
2005
, “
A User-Friendly Programme for Calculating Forming Limit Diagrams
,” 8th
ESAFORM
Conference
,
D.
Banabic
, ed.,
The Publishing House of the Romanian Academy
,
Bucharest
,
Romania,
pp.
423
427
.
56.
Gologanu
,
M.
,
Comsa
,
D. S.
, and
Banabic
,
D.
,
1913
, “
Theoretical Model for Forming Limit Diagram Predictions Without Initial Inhomogeneity
,”
AIP Conf. Proc.
,
1532
, pp.
245
253
.
57.
Kami
,
A.
,
Dariani
,
B. M.
,
Vanini
,
A. S.
,
Comsa
,
D. S.
, and
Banabic
,
D.
,
2015
, “
Numerical Determination of the Forming Limit Curves of Anisotropic Sheet Metals Using GTN Damage Model
,”
J. Mater. Process. Technol.
,
216
, pp.
472
483
.
58.
Hora
,
P.
,
Tong
,
L.
, and
Berisha
,
B.
,
2013
, “
Modified Maximum Force Criterion, a Model for the Theoretical Prediction of Forming Limit Curves
,”
Int. J. Mater. Form.
,
6
(
2
), pp.
267
279
.
59.
Banabic
,
D.
,
Lazarescu
,
L.
,
Paraianu
,
L.
,
Ciobanu
,
I.
,
Nicodim
,
I.
, and
Comsa
,
D. S.
,
2013
, “
Development of a New Procedure for the Experimental Determination of the Forming Limit Curves
,”
Ann. CIRP
,
62
(
1
), pp.
255
258
.
60.
Barlat
,
F.
,
Gracio
,
J. J.
,
Lee
,
M.-G.
,
Rauch
,
E. F.
, and
Vincze
,
G.
,
2014
, “
An Alternative to Kinematic Hardening in Classical Plasticity
,”
Int. J. Plast.
,
27
(
9
), pp.
1309
1327
.
61.
Barlat
,
F.
,
Vincze
,
G.
,
Grácio
,
J. J.
,
Lee
,
M.-G.
,
Rauch
,
E. F.
, and
Tomé
,
C. N.
,
2014
, “
Enhancements of Homogenous Anisotropic Hardening Model and Application to Mild and Dual-Phase Steels
,”
Int. J. Plast.
,
58
, pp.
201
218
.
You do not currently have access to this content.