Four-dimensional (4D) printing is a new category of printing that expands the fabrication process to include time as the fourth dimension, and its simulation and planning need to take time into consideration as well. The common tool for estimating the behavior of a deformable object is the finite element method (FEM). However, there are various sources of deformation in 4D printing, e.g., hardware and material settings. To model the behavior by FEM, a complete understanding of the process is needed and a mathematical model should be established for the structure–property–process relationship. However, the relationship is usually complicated, which requires different kinds of testing to formulate such models due to the process complexity. With the insight that the characteristic of shape change is the primary focus in 4D printing, this paper introduces geometry-driven finite element (GDFE) to simplify the modeling process by inducing deformation behavior from a few physical experiments. The principle of GDFE is based on the relationship between material structure and shape transformation. Accordingly, a deformation simulation can be developed for 4D printing by applying the principles to the GDFEs. The GDFE framework provides an intuitive and effective way to enable simulation and planning for 4D printing even when a complete mathematical model of new material is not available yet. The use of the GDFE framework for some applications is also presented in this paper.

References

1.
Hull
,
C. W.
,
1984
, “
Apparatus for Production of Three-Dimensional Objects by Stereolithography
,” Uvp, Inc., Upland, CA, U.S. Patent No.
US4575330 A
.https://www.google.com/patents/US4575330
2.
Park
,
J.-R.
,
Slanac
,
D. A.
,
Leong
,
T. G.
,
Ye
,
H.
,
Nelson
,
D. B.
, and
Gracias
,
D. H.
,
2008
, “
Reconfigurable Microfluidics With Metallic Containers
,”
J. Microelectromech. Syst.
,
17
(
2
), pp.
265
271
.
3.
Azam
,
A.
,
Laflin
,
K. E.
,
Jamal
,
M.
,
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2011
, “
Self-Folding Micropatterned Polymeric Containers
,”
Biomed. Microdevices
,
13
(
1
), pp.
51
58
.
4.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
5.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
CRC Press
,
Boca Raton, FL
.
6.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021014
.
7.
Ge
,
Q.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2013
, “
Active Materials by Four-Dimension Printing
,”
Appl. Phys. Lett.
,
103
(
13
), p.
131901
.
8.
Tibbits
,
S.
,
2014
, “
4D Printing: Multi-Material Shape Change
,”
Archit. Des.
,
84
(
1
), pp.
116
121
.
9.
Deng
,
D.
, and
Chen
,
Y.
,
2015
, “
Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021701
.
10.
Sydney Gladman
,
A.
,
Matsumoto
,
E. A.
,
Nuzzo
,
R. G.
,
Mahadevan
,
L.
, and
Lewis
,
J. A.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
418
.
11.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
12.
Na
,
J.-H.
,
Evans
,
A. A.
,
Bae
,
J.
,
Chiappelli
,
M. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hull
,
T. C.
, and
Hayward
,
R. C.
,
2015
, “
Programming Reversibly Self-Folding Origami With Micropatterned Photo-Crosslinkable Polymer Trilayers
,”
Adv. Mater.
,
27
(
1
), pp.
79
85
.
13.
Breger
,
J. C.
,
Yoon
,
C.
,
Xiao
,
R.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2015
, “
Self-Folding Thermo-Magnetically Responsive Soft Microgrippers
,”
ACS Appl. Mater. Interfaces
,
7
(
5
), pp.
3398
3405
.
14.
Geryak
,
R.
, and
Tsukruk
,
V. V.
,
2014
, “
Reconfigurable and Actuating Structures From Soft Materials
,”
Soft Matter
,
10
(
9
), pp.
1246
1263
.
15.
Malachowski
,
K.
,
Breger
,
J.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
,
Selaru
,
F. M.
, and
Gracias
,
D. H.
,
2014
, “
Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release
,”
Angew. Chem. Int. Ed.
,
53
(
31
), pp.
8045
8049
.
16.
Kwok
,
T.-H.
,
Wang
,
C. C. L.
,
Deng
,
D.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2015
, “
Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures
,”
ASME J. Mech. Des.
,
131
(
1
),
p
.
111413
.
17.
Hernandez
,
E. A. P.
,
Hartl
,
D. J.
,
Akleman
,
E.
, and
Lagoudas
,
D. C.
,
2016
, “
Modeling and Analysis of Origami Structures With Smooth Folds
,”
Comput. Aided Des.
,
78
, pp.
93
106
.
18.
Momeni
,
F.
,
Hassani
,
N. S. M. M.
,
Liu
,
X.
, and
Ni
,
J.
,
2017
, “
A Review of 4D Printing
,”
Mater. Des.
,
122
, pp.
42
79
.
19.
Tibbits
,
S.
,
2012
, “
Design to Self-Assembly
,”
Archit. Des.
,
82
(
2
), pp.
68
73
.
20.
Khoo
,
Z. X.
,
Teoh
,
J. E. M.
,
Liu
,
Y.
,
Chua
,
C. K.
,
Yang
,
S.
,
An
,
J.
,
Leong
,
K. F.
, and
Yeong
,
W. Y.
,
2015
, “
3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing
,”
Virtual Phys. Prototyping
,
10
(
3
), pp.
103
122
.
21.
Choi
,
J.
,
Kwon
,
O.-C.
,
Jo
,
W.
,
Lee
,
H. J.
, and
Moon
,
M.-W.
,
2015
, “
4D Printing Technology: A Review
,”
3D Print. Addit. Manuf.
,
2
(
4
), pp.
159
167
.
22.
Wang
,
M.-F.
,
Maleki
,
T.
, and
Ziaie
,
B.
,
2008
, “
Enhanced 3-D Folding of Silicon Microstructures Via Thermal Shrinkage of a Composite Organic/Inorganic Bilayer
,”
J. Microelectromech. Syst.
,
17
(
4
), pp.
882
889
.
23.
Yasu
,
K.
, and
Inami
,
M.
,
2012
, “
Popapy: Instant Paper Craft Made Up in a Microwave Oven
,”
Advances in Computer Entertainment
(Lecture Notes in Computer Science), Vol.
7624
,
A.
Nijholt
,
T.
Romo
, and
D.
Reidsma
, eds.,
Springer
,
Berlin
, pp.
406
420
.
24.
Smela
,
E.
,
2003
, “
Conjugated Polymer Actuators for Biomedical Applications
,”
Adv. Mater.
,
15
(
6
), pp.
481
494
.
25.
Ionov
,
L.
,
2012
, “
Biomimetic 3D Self-Assembling Biomicroconstructs by Spontaneous Deformation of Thin Polymer Films
,”
J. Mater. Chem.
,
22
(
37
), pp.
19366
19375
.
26.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
,
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
Design and Optimization of a Shape Memory Alloy-Based Self-Folding Sheet
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111007
.
27.
Ionov
,
L.
,
2011
, “
Soft Microorigami: Self-Folding Polymer Films
,”
Soft Matter
,
7
(
15
), pp.
6786
6791
.
28.
Shim
,
T. S.
,
Kim
,
S.-H.
,
Heo
,
C.-J.
,
Jeon
,
H. C.
, and
Yang
,
S.-M.
,
2012
, “
Controlled Origami Folding of Hydrogel Bilayers With Sustained Reversibility for Robust Microcarriers
,”
Angew. Chem. Int. Ed.
,
51
(
6
), pp.
1420
1423
.
29.
Stoychev
,
G.
,
Turcaud
,
S.
,
Dunlop
,
J. W. C.
, and
Ionov
,
L.
,
2013
, “
Hierarchical Multi-Step Folding of Polymer Bilayers
,”
Adv. Funct. Mater.
,
23
(
18
), pp.
2295
2300
.
30.
Ahmed
,
S.
,
Lauff
,
C.
,
Crivaro
,
A.
,
McGough
,
K.
,
Sheridan
,
R.
,
Frecker
,
M.
,
von Lockette
,
P.
,
Ounaies
,
Z.
,
Simpson
,
T.
,
Lien
,
J.-M.
, and
Strzelec
,
R.
,
2013
, “
Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments
,”
ASME
Paper No. DETC2013-12405.
31.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.
32.
Raviv
,
D.
,
Zhao
,
W.
,
McKnelly
,
C.
,
Papadopoulou
,
A.
,
Kadambi
,
A.
,
Shi
,
B.
,
Hirsch
,
S.
,
Dikovsky
,
D.
,
Zyracki
,
M.
,
Olguin
,
C.
,
Raskar
,
R.
, and
Tibbits
,
S.
,
2014
, “
Active Printed Materials for Complex Self-Evolving Deformations
,”
Sci. Rep.
,
4
, p.
7422
.
33.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
, Singapore, July 13–17, p.
291303
.http://www.dl.icdst.org/pdfs/files/7ebaab2827227060e6e9a869e3289df6.pdf
34.
Tachi
,
T.
,
2013
, “
Interactive Form-Finding of Elastic Origami
,”
International Association for Shell and Spatial Structures Symposium
(IASS), Wrocław, Poland, Sept. 23-27, Paper No.
1311
.http://origami.c.u-tokyo.ac.jp/~tachi/cg/ElasticOrigami_Tachi_IASS2013.pdf
35.
Zhu
,
L.
,
Igarashi
,
T.
, and
Mitani
,
J.
,
2013
, “
Soft Folding
,”
Comput. Graphics Forum
,
32
(
7
), pp.
167
176
.
36.
Belcastro
,
S.-M.
, and
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
13
), pp.
273
282
.
37.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry
,
Springer
,
Vienna, Austria
, pp.
87
102
.
38.
Hwang
,
H.-D.
, and
Yoon
,
S.-H.
,
2015
, “
Constructing Developable Surfaces by Wrapping Cones and Cylinders
,”
Comput. Aided Des.
,
58
, pp.
230
235
.
39.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051011
.
40.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask Image Projection Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.
41.
Bodansky
,
E.
, and
Gribov
,
A.
,
2006
,
Approximation of a Polyline With a Sequence of Geometric Primitives
,
Springer
,
Berlin
, pp.
468
478
.
You do not currently have access to this content.