Setting optimum process parameters is very critical in achieving a sound friction stir weld joint. Understanding the formation of defects and developing techniques to minimize them can help in improving the overall weld strength. The most common defects in friction stir welding (FSW) are tunnel defects, cavities, and excess flash formation, which are caused due to incorrect tool rotational or advancing speed. In this paper, the formation of these defects is explained with the help of an experimentally verified 3D finite element (FE) model. It was observed that the asymmetricity in temperature distribution varies for different types of defects formed during FSW. The location of the defect also changes based on the shoulder induced flow and pin induced flow during FSW. Besides formation of defects like excess flash, cavity defects, tunnel/wormhole defects, two types of groove like defects are also discussed in this paper. By studying the different types of defects formed, a methodology is proposed to recognize these defects and counter them by modifying the process parameters to achieve a sound joint for a displacement-based FSW process.

References

1.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Murch
,
M. G.
,
Temple-Smith
,
P.
, and
Dawes
,
C. J.
,
1995
, “
Friction Welding
,” The Welding Institute, Cambridge, UK, U.S. Patent No.
US5460317 A
.http://www.google.co.in/patents/US5460317
3.
Kim
,
Y. G.
,
Fujii
,
H.
,
Tsumura
,
T.
,
Komazaki
,
T.
, and
Nakata
,
K.
,
2006
, “
Three Defect Types in Friction Stir Welding of Aluminum Die Casting Alloy
,”
Mater. Sci. Eng.: A
,
415
(
1
), pp.
250
254
.
4.
Crawford
,
R.
,
Cook
,
G. E.
,
Strauss
,
A. M.
,
Hartman
,
D. A.
, and
Stremler
,
M. A.
,
2006
, “
Experimental Defect Analysis and Force Prediction Simulation of High Weld Pitch Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
11
(
6
), pp. 657–665.
5.
Liu
,
H.
,
Fujii
,
H.
,
Maeda
,
M.
, and
Nogi
,
K.
,
2004
, “
Tensile Fracture Location Characterizations of Friction Stir Welded Joints of Different Aluminum Alloys
,”
J. Mater. Sci. Technol.
,
20
(
1
), pp.
103
105
.
6.
Long
,
X.
, and
Khanna
,
S. K.
,
2005
, “
Modelling of Electrically Enhanced Friction Stir Welding Process Using Finite Element Method
,”
Sci. Technol. Weld. Joining
,
10
(
4
), pp.
482
487
.
7.
Nandan
,
R.
,
DebRoy
,
T.
, and
Bhadeshia
,
H. K. D. H.
,
2008
, “
Recent Advances in Friction-Stir Welding–Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
.
8.
Li
,
W. Y.
,
Fu
,
T.
,
Hütsch
,
L.
,
Hilgert
,
J.
,
Wang
,
F. F.
,
dos Santos
,
J. F.
, and
Huber
,
N.
,
2014
, “
Effects of Tool Rotational and Welding Speed on Microstructure and Mechanical Properties of Bobbin-Tool Friction-Stir Welded Mg AZ31
,”
Mater. Des.
,
64
, pp.
714
720
.
9.
Kumar
,
B. A.
, and
Murugan
,
N.
,
2014
, “
Optimization of Friction Stir Welding Process Parameters to Maximize Tensile Strength of Stir Cast AA6061-T6/AlN p Composite
,”
Mater. Des.
,
57
, pp.
383
393
.
10.
Sun
,
Y. F.
,
Xu
,
N.
, and
Fujii
,
H.
,
2014
, “
The Microstructure and Mechanical Properties of Friction Stir Welded Cu–30Zn Brass Alloys
,”
Mater. Sci. Eng.: A
,
589
, pp.
228
234
.
11.
Zhao
,
Y.
,
Zhou
,
L.
,
Wang
,
Q.
,
Yan
,
K.
, and
Zou
,
J.
,
2014
, “
Defects and Tensile Properties of 6013 Aluminum Alloy T-Joints by Friction Stir Welding
,”
Mater. Des.
,
57
, pp.
146
155
.
12.
Zhang
,
H.
,
Wang
,
M.
,
Zhou
,
W.
,
Zhang
,
X.
,
Zhu
,
Z.
,
Yu
,
T.
, and
Yang
,
G.
,
2015
, “
Microstructure–Property Characteristics of a Novel Non-Weld-Thinning Friction Stir Welding Process of Aluminum Alloys
,”
Mater. Des.
,
86
, pp.
379
387
.
13.
Liu
,
X. C.
, and
Wu
,
C. S.
,
2016
, “
Elimination of Tunnel Defect in Ultrasonic Vibration Enhanced Friction Stir Welding
,”
Mater. Des.
,
90
, pp.
350
358
.
14.
Morisada
,
Y.
,
Imaizumi
,
T.
, and
Fujii
,
H.
,
2015
, “
Clarification of Material Flow and Defect Formation During Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
20
(
2
), pp. 130–137.
15.
Schmidt
,
H.
, and
Hattel
,
J.
,
2004
, “
A Local Model for the Thermomechanical Conditions in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
1
), p.
77
.
16.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2013
, “
Coupled Eulerian Lagrangian Finite Element Modeling of Friction Stir Welding Processes
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1433
1439
.
17.
Zhu
,
Y.
,
Chen
,
G.
,
Chen
,
Q.
,
Zhang
,
G.
, and
Shi
,
Q.
,
2016
, “
Simulation of Material Plastic Flow Driven by Non-Uniform Friction Force During Friction Stir Welding and Related Defect Prediction
,”
Mater. Des.
,
108
, pp.
400
410
.
18.
Davis
,
T. A.
,
Shin
,
Y. C.
, and
Yao
,
B.
,
2011
, “
Observer-Based Adaptive Robust Control of Friction Stir Welding Axial Force
,”
IEEE/ASME Trans. Mechatronics
,
16
(
6
), pp.
1032
1039
.
19.
Zhang
,
Z.
, and
Zhang
,
H. W.
,
2009
, “
Numerical Studies on Controlling of Process Parameters in Friction Stir Welding
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
241
270
.
20.
Kumar
,
K.
,
Kalyan
,
C.
,
Kailas
,
S. V.
, and
Srivatsan
,
T. S.
,
2009
, “
An Investigation of Friction During Friction Stir Welding of Metallic Materials
,”
Mater. Manuf. Processes
,
24
(
4
), pp.
438
445
.
21.
Soundararajan
,
V.
,
Zekovic
,
S.
, and
Kovacevic
,
R.
,
2005
, “
Thermo-Mechanical Model With Adaptive Boundary Conditions for Friction Stir Welding of Al 6061
,”
Int. J. Mach. Tools Manuf.
,
45
(
14
), pp.
1577
1587
.
22.
Colegrove
,
P. A.
, and
Shercliff
,
H. R.
,
2005
, “
3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile
,”
J. Mater. Process. Technol.
,
169
(
2
), pp.
320
327
.
23.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistics
, Hague, The Netherlands, Apr. 19–21, pp.
541
547
.http://www.lajss.org/HistoricalArticles/A%20constitutive%20model%20and%20data%20for%20metals.pdf
24.
Brar
,
N. S.
,
Joshi
,
V. S.
, and
Harris
,
B. W.
,
2009
, “
Constitutive Model Constants for Al7075 T651 and Al7075 T6
,”
AIP Conf. Proc.
,
1195
(
1
), pp.
945
948
.
25.
Hammelmüller
,
F.
, and
Zehetner
,
C.
,
2015
, “
Increasing Numerical Efficiency in Coupled Eulerian-Lagrangain Metal Forming Simulations
,”
XIII International Conference on Computational Plasticity: Fundamentals and Applications
(
COMPLAS
), Barcelona, Spain, Sept. 1–3, pp.
727
733
.http://upcommons.upc.edu/handle/2117/81387
26.
ABAQUS
,
2014
, “
ABAQUS 6.14 Documentation
,” Dassault Systèmes, Providence, RI.
27.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2014
, “
Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
607
617
.
28.
Qian
,
J.
,
Li
,
J.
,
Sun
,
F.
,
Xiong
,
J.
,
Zhang
,
F.
, and
Lin
,
X.
,
2013
, “
An Analytical Model to Optimize Rotation Speed and Travel Speed of Friction Stir Welding for Defect-Free Joints
,”
Scr. Mater.
,
68
(
3
), pp.
175
178
.
29.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
,
2003
, “
Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
138
145
.
30.
Zhang
,
H. W.
,
Zhang
,
Z.
, and
Chen
,
J. T.
,
2007
, “
3D Modeling of Material Flow in Friction Stir Welding Under Different Process Parameters
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
62
70
.
31.
Moghadam
,
D. G.
, and
Farhangdoost
,
K.
,
2016
, “
Influence of Welding Parameters on Fracture Toughness and Fatigue Crack Growth Rate in Friction Stir Welded Nugget of 2024-T351 Aluminum Alloy Joints
,”
Trans. Nonferrous Met. Soc. China
,
26
(
10
), pp.
2567
2585
.
32.
Schmidt
,
H.
,
Dickerson
,
T. L.
, and
Hattel
,
J.
,
2006
, “
Material Flow in Butt Friction Stir Welds in AA 2024-T3
,”
Acta Mater.
,
54
(
4
), pp.
1199
1209
.
You do not currently have access to this content.