In the context of computer numeric control (CNC)-based sheet metal laser cutting, the problem of heat transfer simulation is relevant for the optimization of CNC programs. Current physically based simulation tools use numeric or analytic algorithms which provide accurate but slow solutions due to the underlying mathematical description of the model. This paper presents: (1) an analytic solution to the laser heating problem of rectangular sheet metal for curved laser trajectories and convective cooling, (2) a graphics processing unit (GPU) implementation of the analytic solution for fast simulation of the problem, and (3) an integration within an interactive environment for the simulation of sheet metal CNC laser cutting. This analytic approach sacrifices the material removal effect of the laser cut in the favor of an approximated real-time temperature map on the sheet metal. The articulation of thermal, geometric, and graphic feedback in virtual manufacturing environments enables interactive redefinition of the CNC programs for better product quality, lower safety risks, material waste, and energy usage among others. The error with respect to finite element analysis (FEA) in temperature prediction descends as low as 3.5%.

References

1.
Steen
,
W. M.
, and
Mazumder
,
J.
,
2010
,
Laser Cutting, Drilling and Piercing
,
Springer
,
London
, pp.
131
198
.
2.
Spence
,
A. D.
, and
Li
,
Z.
,
2001
, “
Parallel Processing for 2-1/2D Machining Simulation
,”
Sixth ACM Symposium on Solid Modeling and Applications
(
SMA
), Ann Arbor, MI, June 4–8, pp.
140
148
.https://dl.acm.org/citation.cfm?doid=376957.376974
3.
Moreno
,
A.
,
Segura
,
Á.
,
Arregui
,
H.
,
Posada
,
J.
,
Ruíz de Infante
,
Á.
, and
Canto
,
N.
,
2014
,
Using 2D Contours to Model Metal Sheets in Industrial Machining Processes
,
Springer
,
London
, pp.
135
149
.
4.
Dewil
,
R.
,
Vansteenwegen
,
P.
, and
Cattrysse
,
D.
,
2016
, “
A Review of Cutting Path Algorithms for Laser Cutters
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5–8
), pp.
1865
1884
.
5.
Posada
,
J.
,
Toro
,
C.
,
Barandiaran
,
I.
,
Oyarzun
,
D.
,
Stricker
,
D.
,
de Amicis
,
R.
,
Pinto
,
E. B.
,
Eisert
,
P.
,
Döllner
,
J.
, and
Vallarino
,
I.
,
2015
, “
Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet
,”
IEEE Comput. Graphics Appl.
,
35
(
2
), pp.
26
40
.
6.
Modest
,
M.
, and
Abakians
,
H.
,
1986
, “
Evaporative Cutting of a Semi-Infinite Body With a Moving CW Laser
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
602
607
.
7.
Zimmer
,
K.
,
2009
, “
Analytical Solution of the Laser-Induced Temperature Distribution Across Internal Material Interfaces
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
497
503
.
8.
Jiang
,
H.-J.
, and
Dai
,
H.-L.
,
2015
, “
Effect of Laser Processing on Three Dimensional Thermodynamic Analysis for HSLA Rectangular Steel Plates
,”
Int. J. Heat Mass Transfer
,
82
, pp.
98
108
.
9.
Winczek
,
J.
,
2010
, “
Analytical Solution to Transient Temperature Field in a Half-Infinite Body Caused by Moving Volumetric Heat Source
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5774
5781
.
10.
Parandoush
,
P.
, and
Hossain
,
A.
,
2014
, “
A Review of Modeling and Simulation of Laser Beam Machining
,”
Int. J. Mach. Tool. Manuf.
,
85
, pp.
135
145
.
11.
Yilbas
,
B.
,
Akhtar
,
S.
, and
Keles
,
O.
,
2014
, “
Laser Cutting of Triangular Blanks From Thick Aluminum Foam Plate: Thermal Stress Analysis and Morphology
,”
Appl. Therm. Eng.
,
62
(
1
), pp.
28
36
.
12.
Akhtar
,
S.
,
Kardas
,
O.
,
Keles
,
O.
, and
Yilbas
,
B.
,
2014
, “
Laser Cutting of Rectangular Geometry Into Aluminum Alloy: Effect of Cut Sizes on Thermal Stress Field
,”
Opt. Laser Eng.
,
61
, pp.
57
66
.
13.
Yilbas
,
B.
,
Akhtar
,
S.
, and
Karatas
,
C.
,
2014
, “
Laser Cutting of Rectangular Geometry Into Alumina Tiles
,”
Opt. Laser Eng.
,
55
, pp.
35
43
.
14.
Akhtar
,
S.
,
2014
, “
Laser Cutting of Thick-Section Circular Blanks: Thermal Stress Prediction and Microstructural Analysis
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5
), pp.
1345
1358
.
15.
Roberts
,
I.
,
Wang
,
C.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tool. Manuf.
,
49
(
12–13
), pp.
916
923
.
16.
Shi
,
B.
, and
Attia
,
H.
,
2013
, “
Integrated Process of Laser-Assisted Machining and Laser Surface Heat Treatment
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061021
.
17.
Akarapu
,
R.
,
Li
,
B.
, and
Segall
,
A.
,
2004
, “
A Thermal Stress and Failure Model for Laser Cutting and Forming Operations
,”
J. Failure Anal. Prev.
,
4
(
5
), pp.
51
62
.
18.
Nyon
,
K.
,
Nyeoh
,
C.
,
Mokhtar
,
M.
, and
Abdul-Rahman
,
R.
,
2012
, “
Finite Element Analysis of Laser Inert Gas Cutting on Inconel 718
,”
Int. J. Adv. Manuf. Tech.
,
60
(
9–12
), pp.
995
1007
.
19.
Fu
,
C.
,
Sealy
,
M.
,
Guo
,
Y.
, and
Wei
,
X.
,
2015
, “
Finite Element Simulation and Experimental Validation of Pulsed Laser Cutting of Nitinol
,”
J. Manuf. Process.
,
19
, pp.
81
86
.
20.
Yilbas
,
B.
,
Akhtar
,
S.
, and
Keles
,
O.
,
2013
, “
Laser Cutting of Aluminum Foam: Experimental and Model Studies
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051018
.
21.
Modest
,
M.
,
1996
, “
Three-Dimensional, Transient Model for Laser Machining of Ablating/Decomposing Materials
,”
Int. J. Heat Mass Transfer
,
39
(
2
), pp.
221
234
.
22.
Modest
,
M.
,
1997
, “
Laser Through-Cutting and Drilling Models for Ablating/Decomposing Materials
,”
J. Laser Appl.
,
9
(
3
), pp.
137
145
.
23.
Han
,
G.
, and
Na
,
S.
,
1999
, “
A Study on Torch Path Planning in Laser Cutting Processes Part 1: Calculation of Heat Flow in Contour Laser Beam Cutting
,”
J. Manuf. Syst.
,
18
(
2
), pp.
54
61
.
24.
Xu
,
W.
,
Fang
,
J.
,
Wang
,
X.
,
Wang
,
T.
,
Liu
,
F.
, and
Zhao
,
Z.
,
2005
, “
A Numerical Simulation of Temperature Field in Plasma-Arc Forming of Sheet Metal
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1644
1649
.
25.
Kim
,
M.
,
2000
, “
Transient Evaporative Laser-Cutting With Boundary Element Method
,”
Appl. Math. Model.
,
25
(
1
), pp.
25
39
.
26.
Kim
,
M.
,
2004
, “
Transient Evaporative Laser Cutting With Moving Laser by Boundary Element Method
,”
Appl. Math. Model.
,
28
(
10
), pp.
891
910
.
27.
Kheloufi
,
K.
,
Hachemi
,
A.
, and
Benzaoui
,
A.
,
2015
, “
Numerical Simulation of Transient Three-Dimensional Temperature and Kerf Formation in Laser Fusion Cutting
,”
ASME J. Heat Transfer
,
137
(
11
), p.
112101
.
28.
Yuan
,
P.
, and
Gu
,
D.
,
2015
, “
Molten pool Behaviour and Its Physical Mechanism During Selective Laser Melting of TiC/AlSi10 Mg Nanocomposites: Simulation and Experiments
,”
J. Phys. D. Appl. Phys.
,
48
(
3
), p.
035303
.
29.
Gross
,
M. S.
,
2006
, “
On Gas Dynamic Effects in the Modelling of Laser Cutting Processes
,”
Appl. Math. Model.
,
30
(
4
), pp.
307
318
.
30.
Boffy
,
H.
,
Baietto
,
M.
,
Sainsot
,
P.
, and
Lubrecht
,
A.
,
2012
, “
Detailed Modelling of a Moving Heat Source Using Multigrid Methods
,”
Tribol. Int.
,
46
(
1
), pp.
279
287
.
31.
Gupta
,
N.
, and
Nataraj
,
N.
,
2013
, “
A Posteriori Error Estimates for an Optimal Control Problem of Laser Surface Hardening of Steel
,”
Adv. Comput. Math.
,
39
(
1
), pp.
69
99
.
32.
Bailey
,
N.
,
Tan
,
W.
, and
Shin
,
Y.
,
2015
, “
A Parametric Study on Laser Welding of Magnesium Alloy AZ31 by a Fiber Laser
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041003
.
33.
Mejia
,
D.
,
Moreno
,
A.
,
Ruiz-Salguero
,
O.
, and
Barandiaran
,
I.
,
2017
, “
Appraisal of Open Software for Finite Element Simulation of 2D Metal Sheet Laser Cut
,”
Int. J. Interactive Des. Manuf.
,
11
(3), pp.
547
558
.https://link.springer.com/article/10.1007/s12008-016-0308-5
34.
Kim
,
H.
,
Lee
,
S.
, and
Yang
,
D.
,
2009
, “
Toolpath Planning Algorithm for the Ablation Process Using Energy Sources
,”
Comput. Aided Des.
,
41
(
1
), pp.
59
64
.
35.
Han
,
G.-C.
, and
Na
,
S.-J.
,
1999
, “
A Study on Torch Path Planning in Laser Cutting Processes Part 2: Cutting Path Optimization Using Simulated Annealing
,”
J. Manuf. Syst.
,
18
(
2
), pp.
62
70
.
36.
Kim
,
Y.
,
Gotoh
,
K.
, and
Toyosada
,
M.
,
2004
, “
Global Cutting-Path Optimization Considering the Minimum Heat Effect With Microgenetic Algorithms
,”
J. Mar. Sci. Technol.
,
9
(
2
), pp.
70
79
.
37.
Velez
,
G.
,
Moreno
,
A.
,
Infante
,
A. R. D.
, and
Chopitea
,
R.
,
2016
, “
Real-Time Part Detection in a Virtually Machined Sheet Metal Defined as a Set of Disjoint Regions
,”
Int. J. Comput. Integr. Manuf.
,
29
(
10
), pp.
1089
1104
.
38.
Pietro
,
P. D.
, and
Yao
,
Y.
,
1995
, “
A Numerical Investigation Into Cutting Front Mobility in CO2 Laser Cutting
,”
Int. J. Mach. Tool. Manu.
,
35
(
5
), pp.
673
688
.
39.
Yilbas
,
B.
, and
Akhtar
,
S.
,
2014
, “
Laser Bending of Metal Sheet and Thermal Stress Analysis
,”
Opt. Laser Technol.
,
61
, pp.
34
44
.
You do not currently have access to this content.