Tolerance analysis defines a procedure to estimate the resultant variation of the assembly geometry, given the tolerances associated with individual components and the functional relationship between the individual components and the assembly requirements. This aspect is particularly relevant when parts made of composite material are considered, since the research emphasis to date was on the design and fabrication of composite parts, with considerably less attention to quality issues in their subsequent assembly. This work presents a numerical tool to solve the tolerance analysis of assemblies made of compliant parts in composite material; it estimates the geometric deviations of an assembly due to the compliance of the material, the geometrical deviations of the components and the fastening of the parts by adhesive. The comparison between numerical and experimental results obtained for a case study shows a good agreement.

References

1.
Ceglarek
,
D.
,
Huang
,
W.
,
Zhou
,
S.
,
Ding
,
Y.
,
Kumar
,
R.
, and
Zhou
,
Y.
,
2004
, “
Time-Based Competition in Multistage Manufacturing: Stream-of-Variation Analysis (SOVA) Methodology—Review
,”
Int. J. Flexible Manuf. Syst.
,
16
(
1
), pp.
11
44
.
2.
Corrado
,
A.
, and
Polini
,
W.
,
2017
, “
Manufacturing Signature in Variational and Vector-Loop Models for Tolerance Analysis of Rigid Parts
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
2153
2161
.
3.
Corrado
,
A.
, and
Polini
,
W.
,
2017
, “
Manufacturing Signature in Jacobian and Torsor Models for Tolerance Analysis of Rigid Parts
,”
Rob. Comput.-Integr. Manuf.
,
46
, pp.
15
24
.
4.
Corrado
,
A.
,
Polini
,
W.
,
Moroni
,
G.
, and
Petrò
,
S.
,
2018
, “
A Variational Model for 3D Tolerance Analysis With Manufacturing Signature and Operating Conditions
,”
Assem. Autom.
,
38
(
1
), pp.
10
–1
9
.
5.
Chang
,
M.
, and
Gossard
,
D. C.
,
1997
, “
Modeling the Assembly of Compliant, Non-Ideal Parts
,”
Comput.-Aided Des.
,
29
(
10
), pp.
701
708
.
6.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
7.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2004
, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
8.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part I: Single-Station Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121003
.
9.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Marin
,
S. P.
,
2004
, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
355
360
.
10.
Lorin
,
S.
,
Lindkvist
,
L.
,
Söderberg
,
R.
, and
Sandboge
,
R.
,
2013
, “
Combining Variation Simulation With Thermal Expansion Simulation for Geometry Assurance
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
3
), p.
031007
.
11.
Dong
,
C.
,
Zhang
,
C.
,
Liang
,
Z.
, and
Wang
,
B.
,
2004
, “
Dimensional Variation Analysis and Synthesis for Composite Components and Assemblies
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
635
646
.
12.
Jareteg
,
C.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
,
Carlson
,
J.
,
Cromvik
,
C.
, and Edelvik, F.,
2014
, “
Variation Simulation for Composite Parts and Assemblies Including Variation in Fiber Orientation and Thickness
,”
Procedia CIRP.
,
23
, pp.
235
240
.
13.
Zhang, T., and Shi, J., 2016, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part II: Multistation Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(12), p.
121004
.
14.
Banea
,
M. D.
, and
da Silva
,
L. F. M.
,
2009
, “
Adhesively Bonded Joints in Composite Materials: An Overview
,”
Proc. Inst. Mech. Eng., Part L
,
223
(
1
), pp.
1
18
.
15.
Gay
,
D.
,
2014
,
Composite Materials: Design and Applications
, 3rd ed.,
Taylor & Francis
, Boca Raton, FL.
16.
Kappel
,
E.
,
Stefaniak
,
D.
, and
Hühne
,
C.
,
2013
, “
Process Distortions in Prepreg Manufacturing—An Experimental Study on CFRP L-Profiles
,”
Compos. Struct.
,
106
, pp.
615
625
.
17.
Bellini
,
C.
,
Sorrentino
,
L.
,
Polini
,
W.
, and
Corrado
,
A.
,
2017
, “
Spring-in Analysis of CFRP Thin Laminates: Numerical and Experimental Results
,”
Compos. Struct.
,
173
, pp.
17
24
.
You do not currently have access to this content.