Abstract

With the invention of chirped pulse amplification for lasers in the mid-1980s, high power ultrafast lasers entered into the world as a disruptive tool, with potential impact on a broad range of application areas. Since then, ultrafast lasers have revolutionized laser–matter interaction and unleashed their potential applications in manufacturing processes. With unprecedented short pulse duration and high laser intensity, focused optical energy can be delivered to precisely define material locations on a time scale much faster than thermal diffusion to the surrounding area. This unique characteristic has fundamentally changed the way laser interacts with matter and enabled numerous manufacturing innovations over the past few decades. In this paper, an overview of ultrafast laser technology with an emphasis on femtosecond laser is provided first, including its development, type, working principle, and characteristics. Then, ultrafast laser applications in manufacturing processes are reviewed, with a focus on micro/nanomachining, surface structuring, thin film scribing, machining in bulk of materials, additive manufacturing, bio manufacturing, super high resolution machining, and numerical simulation. Both fundamental studies and process development are covered in this review. Insights gained on ultrafast laser interaction with matter through both theoretical and numerical researches are summarized. Manufacturing process innovations targeting various application areas are described. Industrial applications of ultrafast laser-based manufacturing processes are illustrated. Finally, future research directions in ultrafast laser-based manufacturing processes are discussed.

References

1.
Paschotta
,
R.
,
2018
, “
Article on ‘Ultrafast Lasers’ in the Encyclopedia of Laser Physics and Technology
,” https://www.rp-photonics.com/ultrafast_lasers.html, Accessed February 6, 2018.
2.
Sadasivam
,
S.
,
Chan
,
M. K. Y.
, and
Darancet
,
P.
,
2017
, “
Theory of Thermal Relaxation of Electrons in Semiconductors
,”
Phys. Rev. Lett.
,
119
(
13
), p.
136602
. 10.1103/PhysRevLett.119.136602
3.
Rose
,
M.
,
2010
, “
A History of the Laser: A Trip Through the Light Fantastic
,” https://www.photonics.com/a42279/A_History_of_the_Laser_A_Trip Through_the_Light, Accessed February 3,2018.
4.
DeMaria
,
A. J.
,
Stetser
,
D. A.
, and
Heynau
,
H.
,
1966
, “
Self Mode Locking of Lasers With Saturable Absorbers
,”
Appl. Phys. Lett.
,
8
(
7
), pp.
174
176
. 10.1063/1.1754541
5.
Shank
,
C. V.
, and
Ippen
,
E. P.
,
1974
, “
Subpicosecond Kilowatt Pulses From a Mode Locked cw Dye Laser
,”
Appl. Phys. Lett.
,
24
(
8
), pp.
373
376
. 10.1063/1.1655222
6.
Haus
,
H. A.
,
1975
, “
Theory of Mode Locking With a Fast Saturable Absorber
,”
J. Appl. Phys.
,
46
(
7
), pp.
3049
3058
. 10.1063/1.321997
7.
Spence
,
D. E.
,
Kean
,
P. N.
, and
Sibbett
,
W.
,
1991
, “
60-fsec Pulse Generation From a Self-Mode-Locked Ti:Sapphire Laser
,”
Opt. Lett.
,
16
(
1
), pp.
42
44
. 10.1364/OL.16.000042
8.
Sibbett
,
W.
,
Lagatsky
,
A. A.
, and
Brown
,
C. T. A.
,
2012
, “
The Development and Application of Femtosecond Laser Systems
,”
Opt. Express
,
20
(
7
), pp.
6989
7001
. 10.1364/OE.20.006989
9.
Sutter
,
D. H.
,
Jung
,
I. D.
,
Kärtner
,
F. X.
,
Matuschek
,
N.
,
Morier-Genoud
,
F.
,
Scheuer
,
V.
,
Tilsch
,
M.
,
Tschudi
,
T.
, and
Keller
,
U.
,
1998
, “
Self-Starting 6.5-fs Pulses From a Ti: Sapphire Laser Using a Semiconductor Saturable Absorber and Double-Chirped Mirrors
,”
IEEE J. Sel. Top. Quantum Electron.
,
4
(
2
), pp.
169
178
. 10.1109/2944.686720
10.
Strickland
,
D.
, and
Mourou
,
G.
,
1985
, “
Compression of Amplified Chirped Optical Pulses
,”
Opt. Commun.
,
56
(
3
), pp.
219
221
. 10.1016/0030-4018(85)90120-8
11.
Mottay
,
E.
,
Liu
,
X.
,
Zhang
,
H.
,
Mazur
,
E.
,
Sanatinia
,
R.
, and
Pfleging
,
W.
,
2016
, “
Industrial Applications of Ultrafast Laser Processing
,”
MRS Bull.
,
41
(
12
), pp.
984
992
. 10.1557/mrs.2016.275
12.
Lei
,
S.
,
Yang
,
G.
,
Wang
,
X.
,
Chen
,
S.
,
Prieb
,
A.
, and
Ma
,
J.
,
2018
, “
High Energy Femtosecond Laser Peening of 2024 Aluminum Alloy
,”
Procedia CIRP
,
74
, pp.
357
361
. 10.1016/j.procir.2018.08.141
13.
Utéza
,
O.
,
Sanner
,
N.
,
Chimier
,
B.
,
Brocas
,
A.
,
Varkentina
,
N.
,
Sentis
,
M.
,
Lassonde
,
P.
,
Légaré
,
F.
, and
Kieffer
,
J. C.
,
2011
, “
Control of Material Removal of Fused Silica With Single Pulses of Few Optical Cycles to Sub-Picosecond Duration
,”
Appl. Phys. A
,
105
(
1
), pp.
131
141
. 10.1007/s00339-011-6469-y
14.
Malik
,
R.
,
Mills
,
B.
,
Price
,
J. H. V.
,
Petrovich
,
M.
,
Moktadir
,
Z.
,
Li
,
Z.
, and
Rutt
,
H. N.
,
2013
, “
Determination of the Mid-IR Femtosecond Surface-Damage Threshold of Germanium
,”
Appl. Phys. A
,
113
(
1
), pp.
127
133
. 10.1007/s00339-012-7499-9
15.
Mocek
,
T.
,
Polan
,
J.
,
Homer
,
P.
,
Jakubczak
,
K.
,
Rus
,
B.
,
Kim
,
I. J.
,
Kim
,
C. M.
,
Lee
,
G. H.
,
Nam
,
C. H.
,
Hájková
,
V.
,
Chalupský
,
J.
, and
Juha
,
L.
,
2009
, “
Surface Modification of Organic Polymer by Dual Action of Extreme Ultraviolet/Visible-Near Infrared Ultrashort Pulses
,”
J. Appl. Phys.
,
105
(
2
), p.
26105
. 10.1063/1.3072628
16.
Fermann
,
M. E.
, and
Hartl
,
I.
,
2013
, “
Ultrafast Fiber Lasers
,”
Nat. Photonics
,
7
(
11
), pp.
868
874
. 10.1038/nphoton.2013.280
17.
Eidam
,
T.
,
Hanf
,
S.
,
Seise
,
E.
,
Andersen
,
T. V.
,
Gabler
,
T.
,
Wirth
,
C.
,
Schreiber
,
T.
,
Limpert
,
J.
, and
Tünnermann
,
A.
,
2010
, “
Femtosecond Fiber CPA System Emitting 830 W Average Output Power
,”
Opt. Lett.
,
35
(
2
), pp.
94
96
. 10.1364/OL.35.000094
18.
Hamad
,
A. H.
,
2016
, “Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution,”
High Energy and Short Pulse Lasers
,
R.
Viskup
, ed.,
IntechOpen
,
London
.
19.
Sanner
,
N.
,
Huot
,
N.
,
Audouard
,
E.
,
Larat
,
C.
,
Laporte
,
P.
, and
Huignard
,
J. P.
,
2005
, “
100-kHz Diffraction-Limited Femtosecond Laser Micromachining
,”
Appl. Phys. B: Lasers Opt.
,
80
(
1
), pp.
27
30
. 10.1007/s00340-004-1697-x
20.
Chichkov
,
B. N.
,
Momma
,
C.
,
Nolte
,
S.
,
von Alvensleben
,
F.
, and
Tünnermann
,
A.
,
1996
, “
Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids
,”
Appl. Phys. A
,
63
(
2
), pp.
109
115
. 10.1007/BF01567637
21.
Sokolowski-Tinten
,
K.
,
Bialkowski
,
J.
,
Cavalleri
,
A.
,
von der Linde
,
D.
,
Oparin
,
A.
,
Meyer-ter-Vehn
,
J.
, and
Anisimov
,
S.
,
1998
, “
Transient States of Matter During Short Pulse Laser Ablation
,”
Phys. Rev. Lett.
,
81
(
1
), pp.
224
227
. 10.1103/PhysRevLett.81.224
22.
Perez
,
D.
, and
Lewis
,
L.
,
2003
, “
Molecular-Dynamics Study of Ablation of Solids Under Femtosecond Laser Pulses
,”
Phys. Rev. B
,
67
(
18
), p.
184102
. 10.1103/PhysRevB.67.184102
23.
Nedialkov
,
N. N.
,
Imamova
,
S. E.
,
Atanasov
,
P. A.
,
Berger
,
P.
, and
Dausinger
,
F.
,
2005
, “
Mechanism of Ultrashort Laser Ablation of Metals: Molecular Dynamics Simulation
,”
Appl. Surf. Sci.
,
247
(
1–4
), pp.
243
248
. 10.1016/j.apsusc.2005.01.056
24.
Lorazo
,
P.
,
Lewis
,
L. J.
, and
Meunier
,
M.
,
2003
, “
Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation
,”
Phys. Rev. Lett.
,
91
(
22
), p.
225502
. 10.1103/PhysRevLett.91.225502
25.
Vidal
,
F.
,
Johnston
,
T. W.
,
Laville
,
S.
,
Barthélemy
,
O.
,
Chaker
,
M.
,
Le Drogoff
,
B.
,
Margot
,
J.
, and
Sabsabi
,
M.
,
2001
, “
Critical-Point Phase Separation in Laser Ablation of Conductors
,”
Phys. Rev. Lett.
,
86
(
12
), pp.
2573
2576
. 10.1103/PhysRevLett.86.2573
26.
Perez
,
D.
, and
Lewis
,
L. J.
,
2002
, “
Ablation of Solids Under Femtosecond Laser Pulses
,”
Phys. Rev. Lett.
,
89
(
25
), p.
255504
. 10.1103/PhysRevLett.89.255504
27.
Stoian
,
R.
,
Ashkenasi
,
D.
,
Rosenfeld
,
A.
, and
Campbell
,
E. E. B.
,
2000
, “
Coulomb Explosion in Ultrashort Pulsed Laser Ablation of Al2O3
,”
Phys. Rev. B
,
62
(
19
), pp.
13167
13173
. 10.1103/PhysRevB.62.13167
28.
Reif
,
J.
,
Costache
,
F.
,
Eckert
,
S.
, and
Henyk
,
M.
,
2004
, “
Mechanisms of Ultra-Short Laser Pulse Ablation From Ionic Crystals
,”
Appl. Phys. A
,
79
(
4–6
), pp.
1229
1231
. 10.1007/s00339-004-2724-9
29.
Bulgakova
,
N.
,
Stoian
,
R.
,
Rosenfeld
,
A.
,
Hertel
,
I.
, and
Campbell
,
E. E. B.
,
2004
, “
Electronic Transport and Consequences for Material Removal in Ultrafast Pulsed Laser Ablation of Materials
,”
Phys. Rev. B
,
69
(
5
), p.
054102
. 10.1103/PhysRevB.69.054102
30.
Zhao
,
X.
, and
Shin
,
Y. C.
,
2013
, “
Coulomb Explosion and Early Plasma Generation During Femtosecond Laser Ablation of Silicon at High Laser Fluence
,”
J. Phys. D: Appl. Phys.
,
46
(
33
), p.
335501
. 10.1088/0022-3727/46/33/335501
31.
Kudryashov
,
S. I.
,
Saraeva
,
I. N.
,
Lednev
,
V. N.
,
Pershin
,
S. M.
,
Rudenko
,
A. A.
, and
Ionin
,
A. A.
,
2018
, “
Single-Shot Femtosecond Laser Ablation of Gold Surface in Air and Isopropyl Alcohol
,”
Appl. Phys. Lett.
,
112
(
20
), p.
203101
. 10.1063/1.5026591
32.
Cao
,
X. W.
,
Chen
,
Q. D.
,
Fan
,
H.
,
Zhang
,
L.
,
Juodkazis
,
S.
, and
Sun
,
H. B.
,
2018
, “
Liquid-Assisted Femtosecond Laser Precision Machining of Silica
,”
Nanomaterials
,
8
(
5
), p.
287
. 10.3390/nano8050287
33.
Banks
,
P. S.
,
Stuart
,
B. C.
,
Komashko
,
A. M.
,
Feit
,
M. D.
,
Rubenchik
,
A. M.
, and
Perry
,
M. D.
,
2000
, “
Femtosecond Laser Materials Processing
,”
Proceedings of Commercial and Biomedical Applications of Ultrafast Lasers II
,
San Jose, CA
,
Jan. 24–25
, Vol. 3934, pp.
14
21
.
34.
Laville
,
S.
,
Vidal
,
F.
,
Johnston
,
T. W.
,
Barthélemy
,
O.
,
Chaker
,
M.
,
Drogoff
,
B. L.
,
Margot
,
J.
, and
Sabsabi
,
M.
,
2002
, “
Fluid Modeling of the Laser Ablation Depth as a Function of the Pulse Duration for Conductors
,”
Phys. Rev. E
,
66
(
6
), p.
066415
. 10.1103/PhysRevE.66.066415
35.
Nolte
,
S.
,
Momma
,
C.
,
Jacobs
,
H.
,
Tünnermann
,
A.
,
Chichkov
,
B. N.
,
Wellegehausen
,
B.
, and
Welling
,
H.
,
1997
, “
Ablation of Metals by Ultrashort Laser Pulses
,”
J. Opt. Soc. Am. B
,
14
(
10
), pp.
2716
2722
. 10.1364/JOSAB.14.002716
36.
Nedialkov
,
N. N.
,
Imamova
,
S. E.
, and
Atanasov
,
P. A.
,
2004
, “
Ablation of Metals by Ultrashort Laser Pulses
,”
J. Phys. D: Appl. Phys.
,
37
(
4
), pp.
638
643
. 10.1088/0022-3727/37/4/016
37.
Hashida
,
M.
,
Semerok
,
A. F.
,
Gobert
,
O.
,
Petite
,
G.
,
Izawa
,
Y.
, and
Wagner
,
J. F.
,
2002
, “
Ablation Threshold Dependence on Pulse Duration for Copper
,”
Appl. Surf. Sci.
,
197–198
, pp.
862
867
. 10.1016/S0169-4332(02)00463-4
38.
Le Harzic
,
R.
,
Breitling
,
D.
,
Weikert
,
M.
,
Sommer
,
S.
,
Föhl
,
C.
,
Dausinger
,
F.
,
Valette
,
S.
,
Donnet
,
C.
, and
Audouard
,
E.
,
2005
, “
Ablation Comparison With Low and High Energy Densities for Cu and Al With Ultra-Short Laser Pulses
,”
Appl. Phys. A
,
80
(
7
), pp.
1589
1593
. 10.1007/s00339-005-3206-4
39.
Furusawa
,
K.
,
Takahashi
,
K.
,
Kumagai
,
H.
,
Midorikawa
,
K.
, and
Obara
,
M.
,
1999
, “
Ablation Characteristics of Au, Ag, and Cu Metals Using a Femtosecond Ti:Sapphire Laser
,”
Appl. Phys. A
,
69
(
7
), pp.
S359
S366
. 10.1007/s003390051417
40.
Zhao
,
X.
, and
Shin
,
Y. C.
,
2013
, “
Femtosecond Laser Ablation of Aluminum in Vacuum and Air at High Laser Intensity
,”
Appl. Surf. Sci.
,
283
, pp.
94
99
. 10.1016/j.apsusc.2013.06.037
41.
Zeng
,
X.
,
Mao
,
X. L.
,
Greif
,
R.
, and
Russo
,
R. E.
,
2005
, “
Experimental Investigation of Ablation Efficiency and Plasma Expansion During Femtosecond and Nanosecond Laser Ablation of Silicon
,”
Appl. Phys. A
,
80
(
2
), pp.
237
241
. 10.1007/s00339-004-2963-9
42.
Hu
,
W.
,
Shin
,
Y. C.
, and
King
,
G.
,
2012
, “
Characteristics of Plume Plasma and Its Effects on Ablation Depth During Ultrashort Laser Ablation of Copper in Air
,”
J. Phys. D: Appl. Phys.
,
45
(
35
), p.
355204
. 10.1088/0022-3727/45/35/355204
43.
Zhao
,
X.
, and
Shin
,
Y. C.
,
2013
, “
Ablation Dynamics of Silicon by Femtosecond Laser and the Role of Early Plasma
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061015
. 10.1115/1.4025805
44.
Hu
,
W.
,
Shin
,
Y. C.
, and
King
,
G. B.
,
2011
, “
Effect of Air Breakdown With a Focusing Lens on Ultrashort Laser Ablation
,”
Appl. Phys. Lett.
,
99
(
23
), pp.
1
4
. 10.1063/1.3665631
45.
Hu
,
W.
,
Shin
,
Y. C.
, and
King
,
G. B.
,
2011
, “
Early-Stage Plasma Dynamics With Air Ionization During Ultrashort Laser Ablation of Metal
,”
Phys. Plasmas
,
18
(
9
), p.
093302
. 10.1063/1.3633067
46.
Byskov-Nielsen
,
J.
,
Savolainen
,
J. M.
,
Christensen
,
M. S.
, and
Balling
,
P.
,
2010
, “
Ultra-Short Pulse Laser Ablation of Metals: Threshold Fluence, Incubation Coefficient and Ablation Rates
,”
Appl. Phys. A
,
101
(
1
), pp.
97
101
. 10.1007/s00339-010-5766-1
47.
Mannion
,
P. T.
,
Magee
,
J.
,
Coyne
,
E.
,
O’Connor
,
G. M.
, and
Glynn
,
T. J.
,
2004
, “
The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air
,”
Appl. Surf. Sci.
,
233
(
1–4
), pp.
275
287
. 10.1016/j.apsusc.2004.03.229
48.
Di Niso
,
F.
,
Gaudiuso
,
C.
,
Sibillano
,
T.
,
Mezzapesa
,
F. P.
,
Ancona
,
A.
, and
Lugarà
,
P. M.
,
2014
, “
Role of Heat Accumulation on the Incubation Effect in Multi-Shot Laser Ablation of Stainless Steel at High Repetition Rates
,”
Opt. Express
,
22
(
10
), p.
12200
. 10.1364/OE.22.012200
49.
Neuenschwander
,
B.
,
Jaeggi
,
B.
,
Schmid
,
M.
,
Dommann
,
A.
,
Neels
,
A.
,
Bandi
,
T.
, and
Hennig
,
G.
,
2013
, “
Factors Controlling the Incubation in the Application of Ps Laser Pulses on Copper and Iron Surfaces
,”
Proceedings of SPIE, 8607, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII
,
San Francisco, CA
,
Feb. 4–7
, p.
86070D
.
50.
Nedialkov
,
N. N.
, and
Atanasov
,
P. A.
,
2006
, “
Molecular Dynamics Simulation Study of Deep Hole Drilling in Iron by Ultrashort Laser Pulses
,”
Appl. Surf. Sci.
,
252
(
13
), pp.
4411
4415
. 10.1016/j.apsusc.2005.07.096
51.
Amoruso
,
S.
,
Bruzzese
,
R.
,
Wang
,
X.
,
O’Connell
,
G.
, and
Lunney
,
J. G.
,
2010
, “
Multidiagnostic Analysis of Ultrafast Laser Ablation of Metals With Pulse Pair Irradiation
,”
J. Appl. Phys.
,
108
(
11
), pp.
1
10
. 10.1063/1.3516491
52.
Semerok
,
A.
, and
Dutouquet
,
C.
,
2004
, “
Ultrashort Double Pulse Laser Ablation of Metals
,”
Thin Solid Films
,
453–454
, pp.
501
505
. 10.1016/j.tsf.2003.11.115
53.
Povarnitsyn
,
M. E.
,
Itina
,
T. E.
,
Khishchenko
,
K. V.
, and
Levashov
,
P. R.
,
2009
, “
Suppression of Ablation in Femtosecond Double-Pulse Experiments
,”
Phys. Rev. Lett.
,
103
(
19
), p.
195002
. 10.1103/PhysRevLett.103.195002
54.
Singha
,
S.
,
Hu
,
Z.
, and
Gordon
,
R. J.
,
2008
, “
Ablation and Plasma Emission Produced by Dual Femtosecond Laser Pulses
,”
J. Appl. Phys.
,
104
(
11
), p.
113520
. 10.1063/1.3040082
55.
Penczak
,
J.
,
Kupfer
,
R.
,
Bar
,
I.
, and
Gordon
,
R. J.
,
2014
, “
The Role of Plasma Shielding in Collinear Double-Pulse Femtosecond Laser-Induced Breakdown Spectroscopy
,”
Spectrochim. Acta, Part B
,
97
, pp.
34
41
. 10.1016/j.sab.2014.04.007
56.
Hu
,
Z.
,
Singha
,
S.
,
Liu
,
Y.
, and
Gordon
,
R. J.
,
2007
, “
Mechanism for the Ablation of Si〈111〉 With Pairs of Ultrashort Laser Pulses
,”
Appl. Phys. Lett.
,
90
(
13
), pp.
2005
2008
. 10.1063/1.2716838
57.
Choi
,
T. Y.
,
Hwang
,
D. J.
, and
Grigoropoulos
,
C. P.
,
2002
, “
Femtosecond Laser Induced Ablation of Crystalline Silicon Upon Double Beam Irradiation
,”
Appl. Surf. Sci.
,
197–198
, pp.
720
725
. 10.1016/S0169-4332(02)00400-2
58.
Zhao
,
X.
, and
Shin
,
Y. C.
,
2014
, “
Ablation Enhancement of Silicon by Ultrashort Double-Pulse Laser Ablation
,”
Appl. Phys. Lett.
,
105
(
11
), p.
111907
. 10.1063/1.4896350
59.
Abeln
,
T.
,
Radtke
,
J.
, and
Dausinger
,
F.
,
1999
, “
High Precision Drilling With Short-Pulsed Solid-State Lasers
,”
Proceedings of ICALEO
,
San Diego, CA
,
Nov. 15-18
.
60.
Foehl
,
C.
,
Breitling
,
D.
, and
Dausinger
,
F. H.
,
2003
, “
Precise Drilling of Steel With Ultrashort Pulsed Solid State Lasers
,”
Proc. SPIE
,
5121
, pp.
271
279
. 10.1117/12.515612
61.
Foehihl
,
C.
, and
Dausinger
,
F.
,
2003
, “
High Precision Deep Drilling With Ultrashort Pulses
,”
Proc. SPIE
,
5063
, pp.
346
351
. 10.1117/12.540506
62.
Kamlage
,
G.
,
Bauer
,
T.
,
Ostendorf
,
A.
, and
Chichkov
,
B. N.
,
2003
, “
Deep Drilling of Metals by Femtosecond Laser Pulses
,”
Appl. Phys. A
,
77
(
2
), pp.
307
310
. 10.1007/s00339-003-2120-x
63.
Yang
,
J.
,
Zhao
,
Y.
,
Zhang
,
N.
,
Liang
,
Y.
, and
Wang
,
M.
,
2007
, “
Ablation of Metallic Targets by High-Intensity Ultrashort Laser Pulses
,”
Phys. Rev. B
,
76
(
16
), p.
165430
. 10.1103/PhysRevB.76.165430
64.
Crawford
,
T. H. R.
,
Borowiec
,
A.
, and
Haugen
,
H. K.
,
2005
, “
Femtosecond Laser Micromachining of Grooves in Silicon With 800 Nm Pulses
,”
Appl. Phys. A
,
80
(
8
), pp.
1717
1724
. 10.1007/s00339-004-2941-2
65.
Borowiec
,
A.
, and
Haugen
,
H. K.
,
2004
, “
Femtosecond Laser Micromachining of Grooves in Indium Phosphide
,”
Appl. Phys. A
,
79
(
3
), pp.
521
529
. 10.1007/s00339-003-2377-0
66.
Matsumura
,
T.
,
Nakatani
,
T.
, and
Yagi
,
T.
,
2007
, “
Deep Drilling on a Silicon Plate With a Femtosecond Laser: Experiment and Model Analysis
,”
Appl. Phys. A
,
86
(
1
), pp.
107
114
. 10.1007/s00339-006-3743-5
67.
Bärsch
,
N.
,
Körber
,
K.
,
Ostendorf
,
A.
, and
Tönshoff
,
K. H.
,
2003
, “
Ablation and Cutting of Planar Silicon Devices Using Femtosecond Laser Pulses
,”
Appl. Phys. A
,
77
(
2
), pp.
237
242
. 10.1007/s00339-003-2118-4
68.
Nikumb
,
S.
,
Chen
,
Q.
,
Li
,
C.
,
Reshef
,
H.
,
Zheng
,
H. Y.
,
Qiu
,
H.
, and
Low
,
D.
,
2005
, “
Precision Glass Machining, Drilling and Profile Cutting by Short Pulse Lasers
,”
Thin Solid Films
,
477
(
1–2
), pp.
216
221
. 10.1016/j.tsf.2004.08.136
69.
Lim
,
Y. C.
,
Altman
,
K. J.
,
Farson
,
D. F.
, and
Flores
,
K. M.
,
2009
, “
Micropillar Fabrication on Bovine Cortical Bone by Direct-Write Femtosecond Laser Ablation
,”
J. Biomed. Opt.
,
14
(
6
), p.
064021
. 10.1117/1.3268444
70.
Liu
,
Y.
,
Zhang
,
R.
,
Li
,
W.
,
Wang
,
J.
,
Yang
,
X.
,
Cheng
,
L.
, and
Zhang
,
L.
,
2018
, “
Effect of Machining Parameter on Femtosecond Laser Drilling Processing on SiC/SiC Composites
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
1795
1811
. 10.1007/s00170-017-1163-7
71.
Romoli
,
L.
,
Lovicu
,
G.
,
Rashed
,
C. A. A.
,
Dini
,
G.
,
De Sanctis
,
M.
, and
Fiaschi
,
M.
,
2015
, “
Microstructural Changes Induced by Ultrashort Pulsed Lasers in Microdrilling of Fuel Nozzles
,”
Procedia CIRP
,
33
, pp.
508
513
. 10.1016/j.procir.2015.06.064
72.
Breitling
,
D.
,
Ruf
,
A.
, and
Dausinger
,
F.
,
2004
, “
Fundamental Aspects in Machining of Metals With Short and Ultrashort Laser Pulses
,”
Proc. SPIE
,
5339
, pp.
49
63
. 10.1117/12.541434
73.
Breitling
,
D.
,
Ruf
,
A.
,
Berger
,
P. W.
,
Dausinger
,
F.
,
Klimentov
,
S. M.
,
Pivovarov
,
P. A.
,
Kononenko
,
T. V.
, and
Konov
,
V. I.
,
2003
, “
Plasma Effects During Ablation and Drilling Using Pulsed Solid-State Lasers
,”
Proceedings of SPIE, 5121, Laser Processing of Advanced Materials and Laser Microtechnologies
,
Moscow, Russia
,
June 22–27, 2002
, pp.
24
33
.
74.
Nibbering
,
E. T.
,
Curley
,
P. F.
,
Grillon
,
G.
,
Prade
,
B. S.
,
Franco
,
M.
,
Salin
,
F.
, and
Mysyrowicz
,
A.
,
1996
, “
Conical Emission From Self-Guided Femtosecond Pulses in Air
,”
Opt. Lett.
,
21
(
1
), pp.
62
65
. 10.1364/OL.21.000062
75.
Ancona
,
A.
,
Röser
,
F.
,
Rademaker
,
K.
,
Limpert
,
J.
,
Nolte
,
S.
, and
Tünnermann
,
A.
,
2008
, “
High Speed Laser Drilling of Metals Using a High Repetition Rate, High Average Power Ultrafast Fiber CPA System
,”
Opt. Express
,
16
(
12
), pp.
8958
8968
. 10.1364/OE.16.008958
76.
Lapczyna
,
M.
,
Chen
,
K. P.
,
Herman
,
P. R.
,
Tan
,
H. W.
, and
Marjoribanks
,
R. S.
,
1999
, “
Ultra High Repetition Rate (133 MHz) Laser Ablation of Aluminum With 1.2-Ps Pulses
,”
Appl. Phys. A Mater. Sci. Process.
,
69
(
7
), pp.
S883
S886
. 10.1007/s003390051552
77.
Kondo
,
Y.
,
Qiu
,
J.
,
Mitsuyu
,
T.
,
Hirao
,
K.
, and
Yoko
,
T.
,
1999
, “
Three-Dimensional Microdrilling of Glass by Multiphoton Process and Chemical Etching
,”
Jpn. J. Appl. Phys.
,
38
(
10A
), pp.
L1146
L1148
. 10.1143/JJAP.38.L1146
78.
Cheng
,
Y.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
,
2004
, “
Microfluidic Laser Embedded in Glass by Three-Dimensional Femtosecond Laser Microprocessing
,”
Opt. Lett.
,
29
(
17
), pp.
2007
2009
. 10.1364/OL.29.002007
79.
Kiyama
,
S.
,
Matsuo
,
S.
,
Hashimoto
,
S.
, and
Morihira
,
Y.
,
2009
, “
Examination of Etching Agent and Etching Mechanism on Femtosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates
,”
J. Phys. Chem. C
,
113
(
27
), pp.
11560
11566
. 10.1021/jp900915r
80.
Wortmann
,
D.
,
Gottmann
,
J.
,
Brandt
,
N.
, and
Horn-Solle
,
H.
,
2008
, “
Micro- and Nanostructures Inside Sapphire by Fs-Laser Irradiation and Selective Etching
,”
2008 Conference on Quantum Electron and Conference on Lasers and Electro-Optics, CLEO/QELS
,
San Jose, CA
,
May 4–9
, pp.
197
200
.
81.
Bellouard
,
Y.
,
Said
,
A.
,
Dugan
,
M.
, and
Bado
,
P.
,
2004
, “
Fabrication of High-Aspect Ratio, Micro-Fluidic Channels and Tunnels Using Femtosecond Laser Pulses and Chemical Etching
,”
Opt. Express
,
12
(
10
), pp.
2120
2129
. 10.1364/OPEX.12.002120
82.
Marcinkevičius
,
A.
,
Juodkazis
,
S.
,
Watanabe
,
M.
,
Miwa
,
M.
,
Matsuo
,
S.
,
Misawa
,
H.
, and
Nishii
,
J.
,
2001
, “
Femtosecond Laser-Assisted Three-Dimensional Microfabrication in Silica
,”
Opt. Lett.
,
26
(
5
), pp.
277
279
. 10.1364/OL.26.000277
83.
Ran
,
A.
,
Yan
,
L.
,
Yan-Ping
,
D.
,
Ying
,
F.
,
Hong
,
Y.
, and
Qi-Huang
,
G.
,
2004
, “
Laser Micro-Hole Drilling of Soda-Lime Glass With Femtosecond Pulses
,”
Chin. Phys. Lett.
,
21
(
12
), pp.
2465
2468
. 10.1088/0256-307X/21/12/040
84.
Hwang
,
D. J.
,
Choi
,
T. Y.
, and
Grigoropoulos
,
C. P.
,
2004
, “
Liquid-Assisted Femtosecond Laser Drilling of Straight and Three-Dimensional Microchannels in Glass
,”
Appl. Phys. A
,
79
(
3
), pp.
605
612
. 10.1007/s00339-004-2547-8
85.
Li
,
Y.
,
Itoh
,
K.
,
Watanabe
,
W.
,
Yamada
,
K.
,
Kuroda
,
D.
,
Nishii
,
J.
, and
Jiang
,
Y.
,
2001
, “
Three-Dimensional Hole Drilling of Silica Glass From the Rear Surface With Femtosecond Laser Pulses
,”
Opt. Lett.
,
26
(
23
), pp.
1912
1914
. 10.1364/OL.26.001912
86.
Zhao
,
X.
, and
Shin
,
Y. C.
,
2011
, “
Femtosecond Laser Drilling of High-Aspect Ratio Microchannels in Glass
,”
Appl. Phys. A
,
104
(
2
), pp.
713
719
. 10.1007/s00339-011-6326-z
87.
Liao
,
Y.
,
Ju
,
Y.
,
Zhang
,
L.
,
He
,
F.
,
Zhang
,
Q.
,
Shen
,
Y.
,
Chen
,
D.
,
Cheng
,
Y.
,
Xu
,
Z.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
,
2010
, “
Three-Dimensional Microfluidic Channel With Arbitrary Length and Configuration Fabricated Inside Glass by Femtosecond Laser Direct Writing
,”
Opt. Lett.
,
35
(
19
), pp.
3225
3227
. 10.1364/OL.35.003225
88.
Xia
,
B.
,
Jiang
,
L.
,
Li
,
X.
,
Yan
,
X.
,
Zhao
,
W.
, and
Lu
,
Y.
,
2015
, “
High Aspect Ratio, High-Quality Microholes in PMMA: A Comparison Between Femtosecond Laser Drilling in Air and in Vacuum
,”
Appl. Phys. A
,
119
(
1
), pp.
61
68
. 10.1007/s00339-014-8955-5
89.
Pronko
,
P. P.
,
Dutta
,
S. K.
,
Squier
,
J.
,
Rudd
,
J. V.
,
Du
,
D.
, and
Mourou
,
G.
,
1995
, “
Machining of Sub-Micron Holes Using a Femtosecond Laser at 800 nm
,”
Opt. Commun.
,
114
(
1–2
), pp.
106
110
. 10.1016/0030-4018(94)00585-I
90.
Joglekar
,
A. P.
,
Liu
,
H.
,
Spooner
,
G. J.
,
Meyhöfer
,
E.
,
Mourou
,
G.
, and
Hunt
,
A. J.
,
2003
, “
A Study of the Deterministic Character of Optical Damage by Femtosecond Laser Pulses and Applications to Nanomachining
,”
Appl. Phys. B
,
77
(
1
), pp.
25
30
. 10.1007/s00340-003-1246-z
91.
Simon
,
P.
, and
Ihlemann
,
J.
,
1997
, “
Ablation of Submicron Structures on Metals and Semiconductors by Femtosecond UV-Laser Pulses
,”
Appl. Surf. Sci.
,
109–110
, pp.
25
29
. 10.1016/S0169-4332(96)00615-0
92.
Bravo
,
H.
,
Szapiro
,
B. T.
,
Wachulak
,
P. W.
,
Marconi
,
M. C.
,
Chao
,
W.
,
Anderson
,
E. H.
,
Menoni
,
C. S.
, and
Rocca
,
J. J.
,
2012
, “
Demonstration of Nanomachining With Focused Extreme Ultraviolet Laser Beams
,”
IEEE J. Sel. Top. Quantum Electron.
,
18
(
1
), pp.
443
448
. 10.1109/JSTQE.2011.2158392
93.
Yu
,
X.
,
Bian
,
Q.
,
Chang
,
Z.
,
Corkum
,
P. B.
, and
Lei
,
S.
,
2013
, “
Femtosecond Laser Nanomachining Initiated by Ultraviolet Multiphoton Ionization
,”
Opt. Express
,
21
(
20
), pp.
24185
24190
. 10.1364/OE.21.024185
94.
Yu
,
X.
,
Chang
,
Z.
,
Corkum
,
P. B.
, and
Lei
,
S.
,
2014
, “
Fabricating Nanostructures on Fused Silica Using Femtosecond Infrared Pulses Combined With Sub-Nanojoule Ultraviolet Pulses
,”
Opt. Lett.
,
39
(
19
), pp.
5638
5640
. 10.1364/OL.39.005638
95.
Götte
,
N.
,
Winkler
,
T.
,
Meinl
,
T.
,
Kusserow
,
T.
,
Zielinski
,
B.
,
Sarpe
,
C.
,
Senftleben
,
A.
,
Hillmer
,
H.
, and
Baumert
,
T.
,
2016
, “
Temporal Airy Pulses for Controlled High Aspect Ratio Nanomachining of Dielectrics
,”
Opt. Mater. Express
,
3
(
4
), pp.
389
395
. 10.1364/optica.3.000389
96.
Chimmalgi
,
A.
,
Choi
,
T. Y.
,
Grigoropoulos
,
C. P.
, and
Komvopoulos
,
K.
,
2003
, “
Femtosecond Laser Aperturless Near-Field Nanomachining of Metals Assisted by Scanning Probe Microscopy
,”
Appl. Phys. Lett.
,
82
(
8
), pp.
1146
1148
. 10.1063/1.1555693
97.
Lin
,
Y.
,
Hong
,
M. H.
,
Wang
,
W. J.
,
Law
,
Y. Z.
, and
Chong
,
T. C.
,
2005
, “
Sub-30 Nm Lithography With Near-Field Scanning Optical Microscope Combined With Femtosecond Laser
,”
Appl. Phys. A
,
80
(
3
), pp.
461
465
. 10.1007/s00339-004-3093-0
98.
Chen
,
C. Y.
,
Tsai
,
M. W.
,
Chuang
,
T. H.
,
Chang
,
Y. T.
, and
Lee
,
S. C.
,
2007
, “
Extraordinary Transmission Through a Silver Film Perforated With Cross Shaped Hole Arrays in a Square Lattice
,”
Appl. Phys. Lett.
,
91
(
6
), p.
063108
. 10.1063/1.2767183
99.
Srituravanich
,
W.
,
Fang
,
N.
,
Sun
,
C.
,
Luo
,
Q.
, and
Zhang
,
X.
,
2004
, “
Plasmonic Nanolithography
,”
Nano Lett.
,
4
(
6
), pp.
1085
1088
. 10.1021/nl049573q
100.
Genet
,
C.
, and
Ebbesen
,
T. W.
,
2007
, “
Light in Tiny Holes
,”
Nature Mater.
,
445
(
7123
), pp.
39
46
. 10.1038/nature05350
101.
Kato
,
J. I.
,
Takeyasu
,
N.
,
Adachi
,
Y.
,
Sun
,
H.-B.
, and
Kawata
,
S.
,
2005
, “
Multiple-Spot Parallel Processing for Laser Micronanofabrication
,”
Appl. Phys. Lett.
,
86
(
4
), p.
044102
. 10.1063/1.1855404
102.
Lim
,
C. S.
,
Hong
,
M. H.
,
Lin
,
Y.
,
Xie
,
Q.
,
Luk’Yanchuk
,
B. S.
,
Senthil Kumar
,
A.
, and
Rahman
,
M.
,
2006
, “
Microlens Array Fabrication by Laser Interference Lithography for Super-Resolution Surface Nanopatterning
,”
Appl. Phys. Lett.
,
89
(
19
), p.
191125
. 10.1063/1.2374809
103.
Choi
,
W. K.
,
Liew
,
T. H.
,
Dawood
,
M. K.
,
Smith
,
H. I.
,
Thompson
,
C. V.
, and
Hong
,
M. H.
,
2008
, “
Synthesis of Silicon Nanowires and Nanofin Arrays Using Interference Lithography and Catalytic Etching
,”
Nano Lett.
,
8
(
11
), pp.
3799
3802
. 10.1021/nl802129f
104.
Liao
,
Y.
,
Cheng
,
Y.
,
Liu
,
C.
,
Song
,
J.
,
He
,
F.
,
Shen
,
Y.
,
Chen
,
D.
,
Xu
,
Z.
,
Fan
,
Z.
,
Wei
,
X.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
,
2013
, “
Direct Laser Writing of Sub-50 Nm Nanofluidic Channels Buried in Glass for Three-Dimensional Micro-Nanofluidic Integration
,”
Lab Chip
,
13
(
8
), pp.
1626
1631
. 10.1039/c3lc41171k
105.
Shimotsuma
,
Y.
,
Kazansky
,
P. G.
,
Qiu
,
J.
, and
Hirao
,
K.
,
2003
, “
Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses
,”
Phys. Rev. Lett.
,
91
(
24
), p.
247405
. 10.1103/PhysRevLett.91.247405
106.
Liao
,
Y.
,
Shen
,
Y.
,
Qiao
,
L.
,
Chen
,
D.
,
Cheng
,
Y.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
,
2013
, “
Femtosecond Laser Nanostructuring in Porous Glass With Sub-50 Nm Feature Sizes
,”
Opt. Lett.
,
38
(
2
), pp.
187
189
. 10.1364/OL.38.000187
107.
Buividas
,
R.
,
Rekštytė
,
S.
,
Malinauskas
,
M.
, and
Juodkazis
,
S.
,
2013
, “
Nano-Groove and 3D Fabrication by Controlled Avalanche Using Femtosecond Laser Pulses
,”
Opt. Mater. Express
,
3
(
10
), pp.
1674
1686
. 10.1364/OME.3.001674
108.
Birnbaum
,
M.
,
1965
, “
Semiconductor Surface Damage Produced by Ruby Lasers
,”
J. Appl. Phys.
,
36
(
11
), pp.
3688
3689
. 10.1063/1.1703071
109.
Isenor
,
N. R.
,
1977
, “
CO2 Laser-Induced Ripple Patterns on NixP1-x Surfaces
,”
Appl. Phys. Lett.
,
31
(
3
), pp.
148
150
. 10.1063/1.89633
110.
Maracas
,
G. N.
,
Harris
,
G. L.
,
Lee
,
C. A.
, and
McFarlane
,
R. A.
,
1978
, “
On the Origin of Periodic Surface Structure of Laser-Annealed Semiconductors
,”
Appl. Phys. Lett.
,
33
(
5
), pp.
453
455
. 10.1063/1.90376
111.
Oron
,
M.
, and
Sørensen
,
G.
,
1979
, “
New Experimental Evidence of the Periodic Surface Structure in Laser Annealing
,”
Appl. Phys. Lett.
,
35
(
10
), pp.
782
784
. 10.1063/1.90977
112.
Ionin
,
A. A.
,
Kudryashov
,
S. I.
,
Makarov
,
S. V.
,
Rudenko
,
A. A.
,
Seleznev
,
L. V.
,
Sinitsyn
,
D. V.
,
Golosov
,
E. V.
,
Kolobov
,
Y. R.
, and
Ligachev
,
A. E.
,
2013
, “
Beam Spatial Profile Effect on Femtosecond Laser Surface Structuring of Titanium in Scanning Regime
,”
Appl. Surf. Sci.
,
284
, pp.
634
637
. 10.1016/j.apsusc.2013.07.144
113.
Hwang
,
T. Y.
, and
Guo
,
C.
,
2011
, “
Femtosecond Laser-Induced Blazed Periodic Grooves on Metals
,”
Opt. Lett.
,
36
(
13
), pp.
2575
2577
. 10.1364/OL.36.002575
114.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2008
, “
Femtosecond Laser Blackening of Platinum
,”
J. Appl. Phys.
,
104
(
5
), p.
053516
. 10.1063/1.2975989
115.
Lim
,
H. U.
,
Kang
,
J.
,
Guo
,
C.
, and
Hwang
,
T. Y.
,
2018
, “
Manipulation of Multiple Periodic Surface Structures on Metals Induced by Femtosecond Lasers
,”
Appl. Surf. Sci.
,
454
, pp.
327
333
. 10.1016/j.apsusc.2018.05.158
116.
Nivas
,
J. J.
,
Anoop
,
K. K.
,
Bruzzese
,
R.
,
Philip
,
R.
, and
Amoruso
,
S.
,
2018
, “
Direct Femtosecond Laser Surface Structuring of Crystalline Silicon at 400 nm
,”
Appl. Phys. Lett.
,
112
(
12
), p.
121601
. 10.1063/1.5011134
117.
Austin
,
D. R.
,
Kafka
,
K. R. P.
,
Trendafilov
,
S.
,
Shvets
,
G.
,
Li
,
H.
,
Yi
,
A. Y.
,
Szafruga
,
U. B.
,
Wang
,
Z.
,
Lai
,
Y. H.
,
Blaga
,
C. I.
,
DiMauro
,
L. F.
, and
Chowdhury
,
E. A.
,
2015
, “
Laser Induced Periodic Surface Structure Formation in Germanium by Strong Field Mid IR Laser Solid Interaction at Oblique Incidence
,”
Optics Express
,
23
(
15
), pp.
19522
19534
. 10.1364/OE.23.019522
118.
Abere
,
M. J.
,
Chen
,
C.
,
Rittman
,
D. R.
,
Kang
,
M.
,
Goldman
,
R. S.
,
Phillips
,
J. D.
,
Torralva
,
B.
, and
Yalisove
,
S. M.
,
2014
, “
Nanodot Formation Induced by Femtosecond Laser Irradiation
,”
Appl. Phys. Lett.
,
105
(
16
), p.
163103
. 10.1063/1.4899066
119.
Rebollar
,
E.
,
Vázquez De Aldana
,
J. R.
,
Pérez-Hernández
,
J. A.
,
Ezquerra
,
T. A.
,
Moreno
,
P.
, and
Castillejo
,
M.
,
2012
, “
Ultraviolet and Infrared Femtosecond Laser Induced Periodic Surface Structures on Thin Polymer Films
,”
Appl. Phys. Lett.
,
100
(
4
), p.
041106
. 10.1063/1.3679103
120.
Höhm
,
S.
,
Rohloff
,
M.
,
Rosenfeld
,
A.
,
Krüger
,
J.
, and
Bonse
,
J.
,
2013
, “
Dynamics of the Formation of Laser-Induced Periodic Surface Structures on Dielectrics and Semiconductors Upon Femtosecond Laser Pulse Irradiation Sequences
,”
Appl. Phys. A
,
110
(
3
), pp.
553
557
. 10.1007/s00339-012-7184-z
121.
Dufft
,
D.
,
Rosenfeld
,
A.
,
Das
,
S. K.
,
Grunwald
,
R.
, and
Bonse
,
J.
,
2009
, “
Femtosecond Laser Induced Periodic Surface Structures Revisited: A Comparative Study on ZnO
,”
J. Appl. Phys.
,
105
(
3
), p.
034908
. 10.1063/1.3074106
122.
Huang
,
M.
,
Zhao
,
F.
,
Cheng
,
Y.
,
Xu
,
N.
, and
Xu
,
Z.
,
2009
, “
Mechanisms of Ultrafast Laser Induced Deep Subwavelength Grating on Graphite and Diamond
,”
Phys. Rev. B
,
79
(
12
), p.
125436
. 10.1103/PhysRevB.79.125436
123.
Gnilitskyi
,
I.
,
Derrien
,
T. J.-Y.
,
Levy
,
Y.
,
Bulgakova
,
N. M.
,
Mocek
,
T.
, and
Orazi
,
L.
,
2017
, “
High-Speed Manufacturing of Highly Regular Femtosecond Laser Induced Periodic Surface Structures: Physical Origin of Regularity
,”
Sci. Rep.
,
7
(
1
), p.
8485
. 10.1038/s41598-017-08788-z
124.
Reif
,
J.
,
Costache
,
F.
,
Henyk
,
M.
, and
Pandelov
,
S. V.
,
2002
, “
Ripples Revisited: Non-Classical Morphology at the Bottom of Femtosecond Laser Ablation Craters in Transparent Dielectrics
,”
Appl. Surf. Sci.
,
197–198
, pp.
891
895
. 10.1016/S0169-4332(02)00450-6
125.
Fraggelakis
,
F.
,
Stratakis
,
E.
, and
Loukakos
,
P. A.
,
2018
, “
Control of Periodic Surface Structures on Silicon by Combined Temporal and Polarization Shaping of Femtosecond Laser Pulses
,”
Appl. Surf. Sci.
,
444
, pp.
154
160
. 10.1016/j.apsusc.2018.02.258
126.
Bonse
,
J.
,
Rosenfeld
,
A.
, and
Krüger
,
J.
,
2009
, “
On the Role of Surface Plasmon Polaritons in the Formation of Laser-Induced Periodic Surface Structures Upon Irradiation of Silicon by Femtosecond Laser Pulses
,”
J. Appl. Phys.
,
106
(
10
), p.
104910
. 10.1063/1.3261734
127.
Nivas
,
J. J. J.
,
Gesuele
,
F.
,
Allahyari
,
E.
,
Oscurato
,
S. L.
,
Fittipaldi
,
R.
,
Vecchione
,
A.
,
Bruzzese
,
R.
, and
Amoruso
,
S.
,
2017
, “
Effects of Ambient Air Pressure on Surface Structures Produced by Ultrashort Laser Pulse Irradiation
,”
Opt. Lett.
,
42
(
14
), pp.
2710
2713
. 10.1364/OL.42.002710
128.
Höhm
,
S.
,
Rosenfeld
,
A.
,
Krüger
,
J.
, and
Bonse
,
J.
,
2015
, “
Laser-Induced Periodic Surface Structures on Titanium Upon Single- and Two-Color Femtosecond Double-Pulse Irradiation
,”
Opt. Express
,
23
(
20
), pp.
25959
25971
. 10.1364/OE.23.025959
129.
Bonse
,
J.
,
Munz
,
M.
, and
Sturm
,
H.
,
2005
, “
Structure Formation on the Surface of Indium Phosphide Irradiated by Femtosecond Laser Pulses
,”
J. Appl. Phys.
,
97
(
1
), p.
013538
. 10.1063/1.1827919
130.
Beltaos
,
A.
,
Kovačević
,
A. G.
,
Matković
,
A.
,
Ralević
,
U.
,
Savić-Šević
,
S.
,
Jovanovi
,
D.
,
Jovanović
,
B. M.
, and
Gajić
,
R.
,
2014
, “
Femtosecond Laser Induced Periodic Surface Structures on Multi-Layer Graphene
,”
J. Appl. Phys.
,
116
(
20
), p.
204306
. 10.1063/1.4902950
131.
Sipe
,
J. E.
,
Young
,
J. F.
,
Preston
,
J. S.
, and
Van Driel
,
H. M.
,
1983
, “
Laser-Induced Surface Structure. I Theory
,”
Phys. Rev. B
,
27
(
2
), pp.
1141
1154
. 10.1103/PhysRevB.27.1141
132.
Jost
,
D.
,
Lüthy
,
W.
, and
Weber
,
H. P.
,
1986
, “
Recording a Surface Acoustic Wave on the Surface of Silicon
,”
Laser Process. Diagonstics
,
2
, pp.
215
219
.
133.
Costache
,
F.
,
Henyk
,
M.
, and
Reif
,
J.
,
2003
, “
Surface Patterning on Insulators Upon Femtosecond Laser Ablation
,”
Appl. Surf. Sci.
,
208–209
, pp.
486
491
. 10.1016/S0169-4332(02)01443-5
134.
He
,
S.
,
Nivas
,
J. J. J.
,
Anoop
,
K. K.
,
Vecchione
,
A.
,
Hu
,
M.
,
Bruzzese
,
R.
, and
Amoruso
,
S.
,
2015
, “
Surface Structures Induced by Ultrashort Laser Pulses: Formation Mechanisms of Ripples and Grooves
,”
Appl. Surf. Sci.
,
353
, pp.
1214
1222
. 10.1016/j.apsusc.2015.07.016
135.
Jia
,
T. Q.
,
Chen
,
H. X.
,
Huang
,
M.
,
Zhao
,
F. L.
,
Qiu
,
J. R.
,
Li
,
R. X.
,
Xu
,
Z. Z.
,
He
,
X. K.
,
Zhang
,
J.
, and
Kuroda
,
H.
,
2005
, “
Formation of Nanogratings on the Surface of a ZnSe Crystal Irradiated by Femtosecond Laser Pulses
,”
Phys. Rev. B
,
72
(
12
), p.
125429
. 10.1103/PhysRevB.72.125429
136.
Carey
,
J. E.
,
Crouch
,
C. H.
, and
Mazur
,
E.
,
2003
, “
Femtosecond-Laser-Assisted Microstructuring of Silicon Surfaces
,”
Opt. Photonics News
,
14
(
2
), pp.
32
36
. 10.1364/OPN.14.2.000032
137.
Shen
,
M. Y.
,
Crouch
,
C. H.
,
Carey
,
J. E.
, and
Mazur
,
E.
,
2004
, “
Femtosecond Laser Induced Formation of Submicrometer Spikes on Silicon in Water
,”
Appl. Phys. Lett.
,
85
(
23
), pp.
5694
5696
. 10.1063/1.1828575
138.
Nayak
,
B. K.
,
Gupta
,
M. C.
, and
Kolasinski
,
K. W.
,
2008
, “
Formation of Nano-Textured Conical Microstructures in Titanium Metal Surface by Femtosecond Laser Irradiation
,”
Appl. Phys. A: Mater. Sci. Process.
,
90
(
3
), pp.
399
402
. 10.1007/s00339-007-4349-2
139.
Li
,
Y.
,
Cui
,
Z.
,
Wang
,
W.
,
Lin
,
C.
, and
Tsai
,
H. L.
,
2015
, “
Formation of Linked Nanostructure-Textured Mound-Shaped Microstructures on Stainless Steel Surface via Femtosecond Laser Ablation
,”
Appl. Surf. Sci.
,
324
, pp.
775
783
. 10.1016/j.apsusc.2014.11.035
140.
Bonse
,
J.
,
Baudach
,
S.
,
Krüger
,
J.
,
Kautek
,
W.
, and
Lenzner
,
M.
,
2002
, “
Femtosecond Laser Ablation of Silicon–Modification Thresholds and Morphology
,”
Appl. Phys. A: Mater. Sci. Process.
,
74
(
1
), pp.
19
25
. 10.1007/s003390100893
141.
Cong
,
J.
,
Yang
,
J.
,
Zhao
,
B.
, and
Xu
,
X.
,
2015
, “
Fabricating Subwavelength Dot-Matrix Surface Structures of Molybdenum by Transient Correlated Actions of Two-Color Femtosecond Laser Beams
,”
Opt. Express
,
23
(
4
), pp.
5357
5367
. 10.1364/OE.23.005357
142.
Skoulas
,
E.
,
Manousaki
,
A.
,
Fotakis
,
C.
, and
Stratakis
,
E.
,
2017
, “
Biomimetic Surface Structuring Using Cylindrical Vector Femtosecond Laser Beams
,”
Sci. Rep.
,
7
(
1
), p.
45114
. 10.1038/srep45114
143.
Liu
,
Q.
,
Zhang
,
N.
,
Yang
,
J.
,
Qiao
,
H.
, and
Guo
,
C.
,
2018
, “
Direct Fabricating Large-Area Nanotriangle Structure Arrays on Tungsten Surface by Nonlinear Lithography of Two Femtosecond Laser Beams
,”
Opt. Express
,
26
(
9
), pp.
11718
11727
. 10.1364/OE.26.011718
144.
Nakata
,
Y.
,
Okada
,
T.
, and
Maeda
,
M.
,
2003
, “
Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse
,”
Jpn. J. Appl. Phys.
,
42
(
Part 2
), pp.
L1452
1454
. 10.1143/JJAP.42.L1452
145.
Nivas
,
J. J. J.
,
He
,
S.
,
Song
,
Z.
,
Rubano
,
A.
,
Vecchione
,
A.
,
Paparo
,
D.
,
Marrucci
,
L.
,
Bruzzese
,
R.
, and
Amoruso
,
S.
,
2017
, “
Femtosecond Laser Surface Structuring of Silicon With Gaussian and Optical Vortex Beams
,”
Appl. Surf. Sci.
,
418
, pp.
565
571
. 10.1016/j.apsusc.2016.10.162
146.
Oliveira
,
V.
,
Moreira
,
R. D. F.
,
de Moura
,
M. F. S. F.
, and
Vilar
,
R.
,
2018
, “
Surface Patterning of CFRP Composites Using Femtosecond Laser Interferometry
,”
Appl. Phys. A: Mater. Sci. Process.
,
124
(
3
), p.
231
. 10.1007/s00339-018-1662-x
147.
Tan
,
Y.
,
Chu
,
W.
,
Lin
,
J.
,
Fang
,
Z.
,
Liao
,
Y.
, and
Cheng
,
Y.
,
2018
, “
Metal Surface Structuring With Spatiotemporally Focused Femtosecond Laser Pulses
,”
J. Opt.
,
20
(
1
), p.
014010
. 10.1088/2040-8986/aa9dc6
148.
Almeida
,
G. F. B.
,
Martins
,
R. J.
,
Otuka
,
A. J. G.
,
Siqueira
,
J. P.
, and
Mendonca
,
C. R.
,
2015
, “
Laser Induced Periodic Surface Structuring on Si by Temporal Shaped Femtosecond Pulses
,”
Opt. Express
,
23
(
21
), pp.
27597
27605
. 10.1364/OE.23.027597
149.
Kuang
,
Z.
,
Liu
,
D.
,
Perrie
,
W.
,
Edwardson
,
S.
,
Sharp
,
M.
,
Fearon
,
E.
,
Dearden
,
G.
, and
Watkins
,
K.
,
2009
, “
Fast Parallel Diffractive Multi-Beam Femtosecond Laser Surface Micro-Structuring
,”
Appl. Surf. Sci.
,
255
(
13–14
), pp.
6582
6588
. 10.1016/j.apsusc.2009.02.043
150.
Younkin
,
R.
,
Carey
,
J. E.
,
Mazur
,
E.
,
Levinson
,
J. A.
, and
Friend
,
C. M.
,
2003
, “
Infrared Absorption by Conical Silicon Microstructures Made in a Variety of Background Gases Using Femtosecond-Laser Pulses
,”
J. Appl. Phys.
,
93
(
5
), pp.
2626
2629
. 10.1063/1.1545159
151.
Parmar
,
V.
, and
Shin
,
Y. C.
,
2018
, “
Wideband Anti-Reflective Silicon Surface Structures Fabricated by Femtosecond Laser Texturing
,”
Appl. Surf. Sci.
,
459
, pp.
86
91
. 10.1016/j.apsusc.2018.07.189
152.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2011
, “
Direct Creation of Black Silicon Using Femtosecond Laser Pulses
,”
Appl. Surf. Sci.
,
257
(
16
), pp.
7291
7294
. 10.1016/j.apsusc.2011.03.106
153.
Yang
,
J.
,
Yang
,
Y.
,
Zhao
,
B.
,
Wang
,
Y.
, and
Zhu
,
X.
,
2012
, “
Femtosecond Laser-Induced Surface Structures to Significantly Improve the Thermal Emission of Light From Metals
,”
Appl. Phys. B
,
106
(
2
), pp.
349
355
. 10.1007/s00340-011-4834-3
154.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2010
, “
Laser Turns Silicon Superwicking
,”
Optics Express
,
18
(
7
), pp.
6455
6460
. 10.1364/OE.18.006455
155.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2013
, “
Femtosecond Laser Surface Structuring Technique for Making Human Enamel and Dentin Surfaces Superwetting
,”
Appl. Phys. B
,
113
(
3
), pp.
423
428
. 10.1007/s00340-013-5482-6
156.
Vorobyev
,
A. Y.
, and
Guo
,
C.
,
2015
, “
Multifunctional Surfaces Produced by Femtosecond Laser Pulses
,”
J. Appl. Phys.
,
117
(
3
), p.
033103
. 10.1063/1.4905616
157.
Huang
,
C.
,
Bell
,
R.
,
Tsubaki
,
A.
,
Zuhlke
,
C. A.
, and
Alexander
,
D. R.
,
2018
, “
Condensation and Subsequent Freezing Delays as a Result of Using Femtosecond Laser Functionalized Surfaces
,”
J. Laser Appl.
,
30
(
1
), p.
011501
. 10.2351/1.4986058
158.
Kostal
,
E.
,
Stroj
,
S.
,
Kasemann
,
S.
,
Matylitsky
,
V.
, and
Domke
,
M.
,
2018
, “
Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superhydrophobic Surface Micropatterns Using Femtosecond Lasers
,”
Langmuir
,
34
(
9
), pp.
2933
2941
. 10.1021/acs.langmuir.7b03699
159.
Kunz
,
C.
,
Müller
,
F. A.
, and
Gräf
,
S.
,
2018
, “
Multifunctional Hierarchical Surface Structures by Femtosecond Laser Processing
,”
Materials
,
11
(
5
), p.
789
. 10.3390/ma11050789
160.
Sarbada
,
S.
, and
Shin
,
Y. C.
,
2017
, “
Superhydrophobic Contoured Surfaces Created on Metal and Polymer Using a Femtosecond Laser
,”
Appl. Surf. Sci.
,
405
, pp.
465
475
. 10.1016/j.apsusc.2017.02.019
161.
Yong
,
J.
,
Chen
,
F.
,
Yang
,
Q.
,
Jiang
,
Z.
, and
Hou
,
X.
,
2018
, “
A Review of Femtosecond-Laser-Induced Underwater Superoleophobility Surfaces
,”
Adv. Mater. Interfaces
,
5
, p.
1701370
. 10.1002/admi.201701370
162.
Bonse
,
J.
,
Kirner
,
S. V.
,
Griepentrog
,
M.
,
Spaltmann
,
D.
, and
Krüger
,
J.
,
2018
, “
Femtosecond Laser Texturing of Surfaces for Tribological Applications
,”
Materials
,
11
(
5
), p.
801
. 10.3390/ma11050801
163.
Kawasegi
,
N.
,
Sugimori
,
H.
,
Morimoto
,
H.
,
Morita
,
N.
, and
Hori
,
I.
,
2009
, “
Development of Cutting Tools With Microscale and Nanoscale Textures to Improve Frictional Behavior
,”
Precis. Eng.
,
33
(
3
), pp.
248
254
. 10.1016/j.precisioneng.2008.07.005
164.
Sugihara
,
T.
, and
Enomoto
,
T.
,
2009
, “
Development of a Cutting Tool With a Nano/Micro-Textured Surface-Improvement of Anti-Adhesive Effect by Considering the Texture Patterns
,”
Precis. Eng.
,
33
(
4
), pp.
425
429
. 10.1016/j.precisioneng.2008.11.004
165.
Bonse
,
J.
,
Höhm
,
S.
,
Koter
,
R.
,
Hartelt
,
M.
,
Spaltmann
,
D.
,
Pentzien
,
S.
,
Rosenfeld
,
A.
, and
Krüger
,
J.
,
2016
, “
Tribological Performance of Sub-100-nm Femtosecond Laser-Induced Periodic Surface Structures on Titanium
,”
Appl. Surf. Sci.
,
374
, pp.
190
196
. 10.1016/j.apsusc.2015.11.019
166.
Lei
,
S.
,
Devarajan
,
S.
, and
Chang
,
Z.
,
2009
, “
A Study of Micropool Lubricated Cutting Tool in Machining of Mild Steel
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1612
1620
. 10.1016/j.jmatprotec.2008.04.024
167.
Zhang
,
K.
,
Deng
,
J.
,
Sun
,
J.
,
Jiang
,
C.
,
Liu
,
Y.
, and
Chen
,
S.
,
2015
, “
Effect of Micro/Nano-Scale Textures on Anti-Adhesive Wear Properties of WC/Co-Based TiAlN Coated Tools in AISI 316 Austenitic Stainless Steel Cutting
,”
Appl. Surf. Sci.
,
355
, pp.
602
614
. 10.1016/j.apsusc.2015.07.132
168.
Zhang
,
K.
,
Deng
,
J.
,
Ding
,
Z.
,
Guo
,
X.
, and
Sun
,
L.
,
2017
, “
Improving Dry Machining Performance of TiAlN Hard-Coated Tools Through Combined Technology of Femtosecond Laser-Textures and WS2 Soft-Coatings
,”
J. Manuf. Processes
,
30
, pp.
492
501
. 10.1016/j.jmapro.2017.10.018
169.
Ling
,
T. D.
,
Liu
,
P.
,
Xiong
,
S.
,
Grzina
,
D.
,
Cao
,
J.
,
Wang
,
Q. J.
,
Xia
,
Z. C.
, and
Talwar
,
R.
,
2013
, “
Surface Texturing of Drill Bits for Adhesion Reduction and Tool Life Enhancement
,”
Tribol. Lett.
,
52
(
1
), pp.
113
122
. 10.1007/s11249-013-0198-7
170.
Hermann
,
J.
,
Benfarah
,
M.
,
Coustillier
,
G.
,
Bruneau
,
S.
,
Axente
,
E.
,
Guillemoles
,
J.-F.
,
Sentis
,
M.
,
Alloncle
,
P.
, and
Itina
,
T.
,
2006
, “
Selective Ablation of Thin Films With Short and Ultrashort Laser Pulses
,”
Appl. Surf. Sci.
,
252
(
13
), pp.
4814
4818
. 10.1016/j.apsusc.2005.06.057
171.
Kim
,
T. W.
,
Pahk
,
H. J.
,
Park
,
H. K.
,
Hwang
,
D. J.
, and
Grigoropoulos
,
C. P.
,
2009
, “
Comparison of Multilayer Laser Scribing of Thin Film Solar Cells With Femto, Pico and Nanosecond Pulse Durations. Thin Film Solar Technology
,”
Proc. SPIE
,
A. E.
Delahoy
and
L. A.
Eldada
, eds.,
7409
, p.
74090A
. 10.1117/12.826458
172.
Gečys
,
P.
,
Raciukaitis
,
G.
,
Wehrmann
,
A.
,
Zimmer
,
K.
,
Braun
,
A.
, and
Ragnow
,
S.
,
2012
, “
Scribing of Thin-Film Solar Cells With Picosecond and Femtosecond Lasers
,”
J. Laser Micro/Nanoeng.
,
7
(
1
), pp.
33
37
. 10.2961/jlmn.2012.01.0006
173.
Zhao
,
X.
,
Cao
,
Y.
,
Shin
,
Y. C.
,
Cheng
,
G.
, and
Nian
,
Q.
,
2014
, “
Precise Selective Scribing of Thin Film Solar Cells by A Picoseconds Laser
,”
Appl. Phys. A: Mater. Sci. Process.
,
116
(
2
), pp.
671
681
. 10.1007/s00339-014-8330-6
174.
Zhao
,
X.
,
Cao
,
Y.
,
Nian
,
Q.
,
Cheng
,
G.
, and
Shin
,
Y. C.
,
2014
, “
Control of Ablation Depth and Surface Structure in P3 Scribing of Thin-Film Solar Cells by A Picosecond Laser
,”
ASME J. Micro Nano Manuf.
,
2
(
3
), p.
031007
. 10.1115/1.4027733
175.
Bayer
,
L.
,
Ye
,
X.
,
Lorenz
,
P.
, and
Zimmer
,
K.
,
2017
, “
Studies on Perovskite Film Ablation and Scribing With ns-, ps- and fs-Laser Pulses
,”
Appl. Phys. A: Mater. Sci. Process.
,
123
(
10
), p.
619
. 10.1007/s00339-017-1234-5
176.
Gečys
,
P.
,
Markauskas
,
E.
,
Dudutis
,
J.
, and
Račiukaitis
,
G.
,
2014
, “
Interaction of Ultrashort Laser Pulses With CIGS and CZTSe Thin Films
,”
Appl. Phys. A: Mater. Sci. Process.
,
114
(
1
), pp.
231
241
. 10.1007/s00339-013-8112-6
177.
Markauskas
,
E.
,
Geys
,
P.
,
Repins
,
I.
,
Beall
,
C.
, and
Raiukaitis
,
G.
,
2017
, “
Laser Lift-off Scribing of the CZTSe Thin-Film Solar Cells at Different Pulse Durations
,”
Sol. Energy
,
150
, pp.
246
254
. 10.1016/j.solener.2017.01.074
178.
Krause
,
S.
,
Miclea
,
P. T.
, and
Seifert
,
G.
,
2015
, “
Selective Femtosecond Laser Lift-off Process for Scribing in Thin-Film Photovoltaics
,”
J. Laser Micro/Nanoeng.
,
10
(
3
), pp.
274
278
. 10.2961/jlmn.2015.03.0007
179.
Wang
,
H.
,
Yao
,
Y. L.
, and
Chen
,
H.
,
2015
, “
Removal Mechanism and Defect Characterization for Glass-Side Laser Scribing of CdTe/CdS Multilayer in Solar Cells
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061006
. 10.1115/1.4030935
180.
Jeoung
,
S. C.
,
Lee
,
H. S.
,
Yahng
,
J. S.
,
Lee
,
H. K.
,
Moon
,
H. Y.
,
Kim
,
K. J.
,
Lee
,
D. G.
,
Park
,
D. H.
,
Yu
,
Y. S.
, and
Ji
,
S. J.
,
2011
, “
Microstructuring of CIGS Thin Film Coated on Mo Back Contact by Ultrafast Laser ‘Rail-Roading’ Patterning
,”
Opt. Express
,
19
(
28
), p.
16730
. 10.1364/OE.19.016730
181.
Zoppel
,
S.
,
Huber
,
H.
, and
Reider
,
G. A.
,
2007
, “
Selective Ablation of Thin Mo and TCO Films With Femtosecond Laser Pulses for Structuring Thin Film Solar Cells
,”
Appl. Phys. A: Mater. Sci. Process.
,
89
(
1
), pp.
161
163
. 10.1007/s00339-007-4158-7
182.
Bian
,
Q.
,
Yu
,
Y.
,
Zhao
,
B.
,
Chang
,
Z.
, and
Lei
,
S.
,
2013
, “
Femtosecond Laser Ablation of Indium Tin-Oxide Narrow Grooves for Thin Film Solar Cells
,”
Opt. Laser Technol.
,
45
(
1
), pp.
395
401
. 10.1016/j.optlastec.2012.06.018
183.
Krause
,
S.
,
Miclea
,
P. T.
,
Steudel
,
F.
,
Schweizer
,
S.
, and
Seifert
,
G.
,
2014
, “
Few Micrometers Wide, Perfectly Isolating Scribes in Transparent Conductive Oxide Layers Prepared by Femtosecond Laser Processing
,”
J. Renewable Sustainable Energy
,
6
(
6
), p.
011402
. 10.1063/1.4840215
184.
Yu
,
X.
,
Ma
,
J.
, and
Lei
,
S.
,
2015
, “
Femtosecond Laser Scribing of Mo Thin Film on Flexible Substrate Using Axicon Focused Beam
,”
J. Manuf. Processes
,
20
, pp.
349
355
. 10.1016/j.jmapro.2015.05.004
185.
Sahin
,
R.
, and
Kabacelik
,
I.
,
2016
, “
Nanostructuring of ITO Thin Films Through Femtosecond Laser Ablation
,”
Appl. Phys. A: Mater. Sci. Process.
,
122
(
4
), p.
314
. 10.1007/s00339-016-9847-7
186.
Yu
,
X.
,
Trallero-Herrero
,
C. A.
, and
Lei
,
S.
,
2016
, “
Materials Processing With Superposed Bessel Beams
,”
Appl. Surf. Sci.
,
360
, pp.
833
839
. 10.1016/j.apsusc.2015.11.074
187.
Chang
,
T. L.
,
Chen
,
C. Y.
, and
Wang
,
C. P.
,
2013
, “
Precise Ultrafast Laser Micromachining in Thin-Film CIGS Photovoltaic Modules
,”
Microelectron. Eng.
,
110
, pp.
381
385
. 10.1016/j.mee.2013.02.072
188.
Chen
,
C. Y.
, and
Chang
,
T. L.
,
2015
, “
Multilayered Structuring of Thin-Film PV Modules by Ultrafast Laser Ablation
,”
Microelectron. Eng.
,
143
, pp.
41
47
. 10.1016/j.mee.2015.03.021
189.
Pecholt
,
B.
,
Vendan
,
M.
,
Dong
,
Y.
, and
Molian
,
P.
,
2008
, “
Ultrafast Laser Micromachining of 3C-SiC Thin Films for MEMS Device Fabrication
,”
Int. J. Adv. Manuf. Technol.
,
39
(
3–4
), pp.
239
250
. 10.1007/s00170-007-1223-5
190.
Yuan
,
D. Q.
,
Zhou
,
M.
,
Cai
,
L.
, and
Xu
,
J. T.
,
2009
, “
Processing Microstructure on Film by Femtosecond Laser
,”
Optica Applicata
,
39
(
3
), pp.
629
635
.
191.
Halstuch
,
A.
,
Westreich
,
O.
,
Sicron
,
N.
, and
Ishaaya
,
A.
,
2018
, “
Femtosecond Laser Inscription of Bragg Gratings on a Thin GaN Film Grown on a Sapphire Substrate
,”
Opt. Lasers Eng.
,
109
, pp.
68
72
. 10.1016/j.optlaseng.2018.05.006
192.
Rapp
,
S.
,
Rosenberger
,
J.
,
Domke
,
M.
,
Heise
,
G.
,
Huber
,
H. P.
, and
Schmidt
,
M.
,
2014
, “
Ultrafast Pump-Probe Microscopy Reveals the Mechanism of Selective fs Laser Structuring of Transparent Thin Films for Maskless Micropatterning
,”
Appl. Surf. Sci.
,
290
, pp.
368
372
. 10.1016/j.apsusc.2013.11.086
193.
Lee
,
S.
,
Yang
,
D.
, and
Nikumb
,
S.
,
2007
, “
Femtosecond Laser Patterning of Ta0.1W0.9Ox/ITO Thin Film Stack
,”
Appl. Surf. Sci.
,
253
(
10
), pp.
4740
4747
. 10.1016/j.apsusc.2006.10.040
194.
Venkatakrishnan
,
K.
,
Tan
,
B.
, and
Sivakumar
,
N. R.
,
2002
, “
Sub-Micron Ablation of Metallic Thin Film by Femtosecond Pulse Laser
,”
Opt.Laser Technol.
,
34
(
7
), pp.
575
578
. 10.1016/S0030-3992(02)00074-9
195.
Tan
,
B.
,
Dalili
,
A.
, and
Venkatakrishnan
,
K.
,
2009
, “
High Repetition Rate Femtosecond Laser Nano-Machining of Thin Films
,”
Appl. Phys. A: Mater. Sci. Process.
,
95
(
2
), pp.
537
545
. 10.1007/s00339-008-4938-8
196.
Kim
,
J.
, and
Na
,
S.
,
2007
, “
Metal Thin Film Ablation With Femtosecond Pulsed Laser
,”
Opt. Laser Technol.
,
39
(
7
), pp.
1443
1448
. 10.1016/j.optlastec.2006.10.001
197.
Tan
,
B.
,
Venkatakrishnan
,
K.
, and
Tok
,
K. G.
,
2003
, “
Selective Surface Texturing Using Femtosecond Pulsed Laser Induced Forward Transfer
,”
Appl. Surf. Sci.
,
207
(
1–4
), pp.
365
371
. 10.1016/S0169-4332(03)00006-0
198.
Nakata
,
Y.
,
Tatsuo
,
O.
, and
Mitsuo
,
M.
,
2004
, “
Micromachining of a Thin Film by Laser Ablation Using Femtosecond Laser With Masks
,”
Opt. Lasers Eng.
,
42
(
4
), pp.
389
393
. 10.1016/j.optlaseng.2004.03.001
199.
Watanabe
,
W.
,
Li
,
Y.
, and
Itoh
,
K.
,
2016
, “
[INVITED] Ultrafast Laser Micro-Processing of Transparent Material
,”
Opt. Laser Technol.
,
78
(
Part A
), pp.
52
61
. 10.1016/j.optlastec.2015.09.023
200.
Tan
,
D.
,
Sharafudeen
,
K. N.
,
Yue
,
Y.
, and
Qiu
,
J.
,
2016
, “
Femtosecond Laser Induced Phenomena in Transparent Solid Materials: Fundamentals and Applications
,”
Prog. Mater. Sci.
,
76
, pp.
154
228
. 10.1016/j.pmatsci.2015.09.002
201.
Jiang
,
L. J.
,
Maruo
,
S.
,
Osellame
,
R.
,
Xiong
,
W.
,
Campbell
,
J. H.
, and
Lu
,
Y. F.
,
2016
, “
Femtosecond Laser Direct Writing in Transparent Materials Based on Nonlinear Absorption
,”
MRS Bull.
,
41
(
12
), pp.
975
983
. 10.1557/mrs.2016.272
202.
Veiko
,
V. P.
,
Kudryashov
,
S. I.
,
Sergeev
,
M. M.
,
Zakoldaev
,
R. A.
,
Danilov
,
P. A
,
Ionin
,
A. A.
,
Antropova
,
T. V.
, and
Anfimova
,
I. N.
,
2016
, “
Femtosecond Laser-Induced Stress-Free Ultra-Densification Inside Porous Glass
,”
Laser Phys. Lett.
,
13
(
5
), p.
055901
. 10.1088/1612-2011/13/5/055901
203.
Cao
,
J.
,
Mazerolles
,
L.
,
Lancry
,
M.
,
Brisset
,
F.
, and
Poumellec
,
B.
,
2017
, “
Modifications in Lithium Niobium Silicate Glass by Femtosecond Laser Direct Writing: Morphology, Crystallization, and Nanostructure
,”
J. Opt. Soc. Am. B
,
34
(
1
), pp.
160
168
. 10.1364/JOSAB.34.000160
204.
Hnatovsky
,
C.
,
Grobnic
,
D.
,
Coulas
,
D.
,
Barnes
,
M.
, and
Mihailov
,
S. J.
,
2017
, “
Self-Organized Nanostructure Formation During Femtosecond-Laser Inscription of Fiber Bragg Gratings
,”
Opt. Lett.
,
42
(
3
), pp.
399
402
. 10.1364/OL.42.000399
205.
Hnatovskya
,
C.
,
Taylor
,
R. S.
,
Rajeev
,
P. P.
,
Simova
,
E.
,
Bhardwaj
,
V. R.
,
Rayner
,
D. M.
, and
Corkum
,
P. B.
,
2005
, “
Pulse Duration Dependence of Femtosecond-Laser-Fabricated Nanogratings in Fused Silica
,”
Appl. Phys. Lett.
,
87
(
1
), p.
014104
. 10.1063/1.1991991
206.
Poumellec
,
B.
,
Lancry
,
M.
,
Chahid-Erraji
,
A.
, and
Kazansky
,
P. G.
,
2011
, “
Modification Thresholds in Femtosecond Laser Processing of Pure Silica: Review of Dependencies on Laser Parameters [Invited]
,”
Opt. Mater. Express
,
1
(
4
), pp.
766
782
. 10.1364/OME.1.000766
207.
Bérubé
,
J.-P.
, and
Vallée
,
R.
,
2016
, “
Femtosecond Laser Direct Inscription of Surface Skimming Waveguides in Bulk Glass
,”
Opt. Lett.
,
41
(
13
), pp.
3074
3077
. 10.1364/OL.41.003074
208.
Grobnic
,
D.
,
Mihailov
,
S. J.
,
Ballato
,
J.
, and
Dragic
,
P. D.
,
2015
, “
Type I and II Bragg Gratings Made With Infrared Femtosecond Radiation in High and Low Alumina Content Aluminosilicate Optical Fibers
,”
Opt. Mater. Express
,
2
(
4
), pp.
313
322
. 10.1364/optica.2.000313
209.
Sima
,
F.
,
Sugioka
,
K.
,
Vázquez Rebeca
,
M.
,
Osellame
,
R.
,
Kelemen
,
L.
, and
Ormos
,
P.
,
2018
, “
Three-Dimensional Femtosecond Laser Processing for Lab-on-a-Chip Applications
,”
Nanophotonics
,
7
(
3
), p.
613
634
. 10.1515/nanoph-2017-0097
210.
Abou Khalil
,
A.
,
Bérubé
,
J.-P.
,
Danto
,
S.
,
Desmoulin
,
J.-C.
,
Cardinal
,
T.
,
Petit
,
Y.
,
Vallée
,
R.
, and
Canioni
,
L.
,
2017
, “
Direct Laser Writing of a New Type of Waveguides in Silver Containing Glasses
,”
Sci. Rep.
,
7
(
1
), p.
11124
. 10.1038/s41598-017-11550-0
211.
Morris
,
J.
,
Stevenson
,
N. K.
,
Bookey
,
H. T.
,
Kar
,
A. K.
,
Brown
,
C. T. A.
,
Hopkins
,
J. M.
,
Dawson
,
M. D.
, and
Lagatsky
,
A. A.
,,
2017
, “
1.9 µm Waveguide Laser Fabricated by Ultrafast Laser Inscription in Tm:Lu2O3 Ceramic
,”
Opt. Express
,
25
(
13
), pp.
14910
14917
. 10.1364/OE.25.014910
212.
Pätzold
,
W. M.
,
Demircan
,
A.
, and
Morgner
,
U.
,
2017
, “
Low-Loss Curved Waveguides in Polymers Written With a Femtosecond Laser
,”
Opt. Express
,
25
(
1
), pp.
263
270
. 10.1364/OE.25.000263
213.
Ams
,
M.
,
Dekker
,
P.
,
Gross
,
S.
, and
Withford Michael
,
J.
,
2017
, “
Fabricating Waveguide Bragg Gratings (WBGs) in Bulk Materials Using Ultrashort Laser Pulses
,”
Nanophotonics
,
6
(
5
), p.
743
763
. 10.1515/nanoph-2016-0119
214.
Mihailov
,
S.
,
Grobnic
,
D.
,
Hnatovsky
,
C.
,
Walker
,
R.
,
Lu
,
P.
,
Coulas
,
D.
, and
Ding
,
H.
,
2017
, “
Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings
,”
Sensors
,
17
(
12
), p.
2909
. 10.3390/s17122909
215.
Chen
,
P.
, and
Shu
,
X.
,
2018
, “
Refractive-Index-Modified-Dot Fabry-Perot Fiber Probe Fabricated by Femtosecond Laser for High-Temperature Sensing
,”
Opt. Express
,
26
(
5
), pp.
5292
5299
. 10.1364/OE.26.005292
216.
Joe
,
H.-E.
,
Yun
,
H.
,
Jo
,
S.-H.
,
Jun
,
M. B. G.
, and
Min
,
B.-K.
,
2018
, “
A Review on Optical Fiber Sensors for Environmental Monitoring
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
5
(
1
), pp.
173
191
. 10.1007/s40684-018-0017-6
217.
Bharadwaj
,
V.
,
Courvoisier
,
A.
,
Fernandez
,
T. T.
,
Ramponi
,
R.
,
Galzerano
,
G.
,
Nunn
,
J.
,
Booth
,
M. J.
,
Osellame
,
R.
,
Eaton
,
S. M.
, and
Salter
,
P. S.
,
2017
, “
Femtosecond Laser Inscription of Bragg Grating Waveguides in Bulk Diamond
,”
Opt. Lett.
,
42
(
17
), pp.
3451
3453
. 10.1364/OL.42.003451
218.
Matushiro
,
Y.
,
Juodkazis
,
S.
,
Hatanaka
,
K.
, and
Watanabe
,
W.
,
2017
, “
Regenerated Volume Gratings in PMMA After Femtosecond Laser Writing
,”
Opt. Lett.
,
42
(
8
), pp.
1632
1635
. 10.1364/OL.42.001632
219.
Ahmed
,
F.
,
Joe
,
H.-E.
,
Min
,
B.-K.
, and
Jun
,
M. B. G.
,
2015
, “
Characterization of Refractive Index Change and Fabrication of Long Period Gratings in Pure Silica Fiber by Femtosecond Laser Radiation
,”
Opt. Laser Technol.
,
74
, pp.
119
124
. 10.1016/j.optlastec.2015.05.018
220.
Heck
,
M.
,
Nolte
,
S.
,
Tünnermann
,
A.
,
Vallée
,
R.
, and
Bernier
,
M.
,
2018
, “
Femtosecond-Written Long-Period Gratings in Fluoride Fibers
,”
Opt. Lett.
,
43
(
9
), pp.
1994
1997
. 10.1364/OL.43.001994
221.
Theodosiou
,
A.
,
Lacraz
,
A.
,
Stassis
,
A.
,
Koutsides
,
C.
,
Komodromos
,
M.
, and
Kalli
,
K.
,
2017
, “
Plane-by-Plane Femtosecond Laser Inscription Method for Single-Peak Bragg Gratings in Multimode CYTOP Polymer Optical Fiber
,”
J. Lightwave Technol.
,
35
(
24
), pp.
5404
5410
. 10.1109/JLT.2017.2776862
222.
Hu
,
X.
,
Kinet
,
D.
,
Chah
,
K.
,
Pun
,
C.-F. J.
,
Tam
,
H.-Y.
, and
Caucheteur
,
C.
,
2017
, “
Bragg Grating Inscription in PMMA Optical Fibers Using 400-nm Femtosecond Pulses
,”
Opt. Lett.
,
42
(
14
), pp.
2794
2797
. 10.1364/OL.42.002794
223.
Ishikawa
,
R.
,
Lee
,
H.
,
Lacraz
,
A.
,
Theodosiou
,
A.
,
Kalli
,
K.
,
Mizuno
,
Y.
, and
Nakamura
,
K.
,
2017
, “
Pressure Dependence of Fiber Bragg Grating Inscribed in Perfluorinated Polymer Fiber
,”
IEEE Photonics Technol. Lett.
,
29
(
24
), pp.
2167
2170
. 10.1109/LPT.2017.2767082
224.
Donko
,
A.
,
Beresna
,
M.
,
Jung
,
Y.
,
Hayes
,
J.
,
Richardson
,
D. J.
, and
Brambilla
,
G.
,
2018
, “
Point-by-Point Femtosecond Laser Micro-Processing of Independent Core-Specific Fiber Bragg Gratings in a Multi-Core Fiber
,”
Opt. Express
,
26
(
2
), pp.
2039
2044
. 10.1364/OE.26.002039
225.
Fuerbach
,
A.
,
Bharathan
,
G.
,
Antipov
,
S.
,
Ams
,
M.
,
Williams
,
R. J.
,
Hudson
,
D. D.
,
Woodward
,
R. I.
,
Jackson
,
S. D.
,
2018
, “
Line-by-line Femtosecond FBG Inscription for Innovative Fiber Lasers
,”
Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF)
,
Zurich
,
Paper No. BW3A.6
.
226.
Ertorer
,
E.
,
Haque
,
M.
,
Li
,
J.
, and
Herman
,
P. R.
,
2018
, “
Femtosecond Laser Filaments for Rapid and Flexible Writing of Fiber Bragg Grating
,”
Opt. Express
,
26
(
7
), pp.
9323
9331
. 10.1364/OE.26.009323
227.
Sugioka
,
K.
, and
Cheng
,
Y.
,
2014
, “
Fabrication of 3D Microfluidic Structures Inside Glass by Femtosecond Laser Micromachining
,”
Appl. Phys. A: Mater. Sci. Process.
,
114
(
1
), pp.
215
221
. 10.1007/s00339-013-8107-3
228.
Sima
,
F.
,
Xu
,
J.
,
Wu
,
D.
, and
Sugioka
,
K.
,
2017
, “
Ultrafast Laser Fabrication of Functional Biochips: New Avenues for Exploring 3D Micro- and Nano-Environments
,”
Micromachines
,
8
(
2
), p.
40
. 10.3390/mi8020040
229.
Sugioka
,
K.
,
Xu
,
J.
,
Wu
,
D.
,
Hanada
,
Y.
,
Wang
,
Z.
,
Cheng
,
Y.
, and
Midorikawa
,
K.
,
2014
, “
Femtosecond Laser 3D Micromachining: A Powerful Tool for the Fabrication of Microfluidic, Optofluidic, and Electrofluidic Devices Based on Glass
,”
Lab Chip
,
14
(
18
), pp.
3447
3458
. 10.1039/C4LC00548A
230.
Shan
,
C.
,
Chen
,
F.
,
Yang
,
Q.
,
Jiang
,
Z.
, and
Hou
,
X.
,
2018
, “
3D Multi-Microchannel Helical Mixer Fabricated by Femtosecond Laser Inside Fused Silica
,”
Micromachines
,
9
(
1
), p.
29
. 10.3390/mi9010029
231.
Wang
,
Z.
,
Jiang
,
L.
,
Li
,
X.
,
Wang
,
A.
,
Yao
,
Z.
,
Zhang
,
K.
, and
Lu
,
Y.
,
2018
, “
High-Throughput Microchannel Fabrication in Fused Silica by Temporally Shaped Femtosecond Laser Bessel-Beam-Assisted Chemical Etching
,”
Opt. Lett.
,
43
(
1
), pp.
98
101
. 10.1364/OL.43.000098
232.
Roth
,
G.-L.
,
Esen
,
C.
, and
Hellmann
,
R.
,
2017
, “
Femtosecond Laser Direct Generation of 3D-Microfluidic Channels Inside Bulk PMMA
,”
Opt. Express
,
25
(
15
), pp.
18442
18450
. 10.1364/OE.25.018442
233.
Martínez Vázquez
,
R.
,
Trotta
,
G.
,
Volpe
,
A.
,
Bernava
,
G.
,
Basile
,
V.
,
Paturzo
,
M.
,
Ferraro
,
P.o
,
Ancona
,
A.
,
Fassi
,
I.
, and
Osellame
,
R.
,
2017
, “
Rapid Prototyping of Plastic Lab-on-a-Chip by Femtosecond Laser Micromachining and Removable Insert Microinjection Molding
,”
Micromachines
,
8
(
11
), p.
328
. 10.3390/mi8110328
234.
Ma
,
H.
,
Zakoldaev
,
R. A.
,
Rudenko
,
A.
,
Sergeev
,
M. M.
,
Veiko
,
V. P.
, and
Itina
,
T. E.
,
2017
, “
Well-Controlled Femtosecond Laser Inscription of Periodic Void Structures in Porous Glass for Photonic Applications
,”
Opt. Express
,
25
(
26
), pp.
33261
33270
. 10.1364/OE.25.033261
235.
Teng
,
Y.
,
Zhou
,
J.
,
Sharafudeen
,
K.
,
Zhou
,
S.
,
Miura
,
K.
, and
Qiu
,
J.
,
2014
, “
Space-Selective Crystallization of Glass Induced by Femtosecond Laser Irradiation
,”
J. Non-Cryst. Solids
,
383
, pp.
91
96
. 10.1016/j.jnoncrysol.2013.04.015
236.
Podlipensky
,
A.
,
Abdolvand
,
A.
,
Seifert
,
G.
, and
Graener
,
H.
,
2005
, “
Femtosecond Laser Assisted Production of Dichroitic 3D Structures in Composite Glass Containing Ag Nanoparticles
,”
Appl. Phys. A: Mater. Sci. Process.
,
80
(
8
), pp.
1647
1652
. 10.1007/s00339-004-3090-3
237.
Sotillo
,
B.
,
Bharadwaj
,
V.
,
Hadden
,
J. P.
,
Sakakura
,
M.
,
Chiappini
,
A.
,
Fernandez
,
T. T.
,
Longhi
,
S.
,
Jedrkiewicz
,
O.
,
Shimotsuma
,
Y.
,
Criante
,
L.
,
Osellame
,
R.
,
Galzerano
,
G.
,
Ferrari
,
M.
,
Miura
,
K.
,
Ramponi
,
R.
,
Barclay
,
P. E.
, and
Eaton
,
S. M.l
,
2016
, “
Diamond Photonics Platform Enabled by Femtosecond Laser Writing
,”
Sci. Rep.
,
6
(
1
), p.
35566
. 10.1038/srep35566
238.
Sotillo
,
B.
,
Bharadwaj
,
V.
,
Hadden
,
J.
,
Rampini
,
S.
,
Chiappini
,
A.
,
Fernandez
,
T.
,
Armellini
,
C.
,
Serpengüzel
,
A.
,
Ferrari
,
M.
,
Barclay
,
P.
,
Ramponi
,
R.
, and
Eaton
,
S.
,
2017
, “
Visible to Infrared Diamond Photonics Enabled by Focused Femtosecond Laser Pulses
,”
Micromachines
,
8
(
2
), p.
60
. 10.3390/mi8020060
239.
Hadden
,
J. P.
,
Bharadwaj
,
V.
,
Sotillo
,
B.
,
Rampini
,
S.
,
Osellame
,
R.
,
Witmer
,
J. D.
,
Jayakumar
,
H.
,
Fernandez
,
T. T.
,
Chiappini
,
A.
,
Armellini
,
C.
,
Ferrari
,
M.
,
Ramponi
,
R.
,
Barclay
,
P. E.
, and
Eaton
S. M.
,
2018
, “
Integrated Waveguides and Deterministically Positioned Nitrogen Vacancy Centers in Diamond Created by Femtosecond Laser Writing
,”
Opt. Lett.
,
43
(
15
), pp.
3586
3589
. 10.1364/OL.43.003586
240.
Ashikkalieva
,
K. K.
,
Kononenko
,
T. V.
,
Obraztsova
,
E. A.
,
Zavedeev
,
E. V.
,
Khomich
,
A. A.
,
Ashkinazi
,
E. E.
, and
Konov
,
V. I.
,
2016
, “
Direct Observation of Graphenic Nanostructures Inside Femtosecond-Laser Modified Diamond
,”
Carbon
,
102
, pp.
383
389
. 10.1016/j.carbon.2016.02.044
241.
Kononenko
,
V. V.
,
Vlasov
,
I. I.
,
Gololobov
,
V. M.
,
Kononenko
,
T. V.
,
Semenov
,
T. A.
,
Khomich
,
A. A.
,
Shershulin
,
V. A.
,
Krivobok
,
V. S.
, and
Konov
,
V. I.
,
2017
, “
Nitrogen-Vacancy Defects in Diamond Produced by Femtosecond Laser Nanoablation Technique
,”
Appl. Phys. Lett.
,
111
(
8
), p.
081101
. 10.1063/1.4993751
242.
Fukuyo
,
F.
,
Fukumitsu
,
K.
,
Uchiyama
,
N.
, and
Wakuda
,
T.
,
2006
, “
Laser Processing Method and Laser Processing Apparatus
,” U.S. Patent No. 6992026.
243.
Ohmura
,
E.
,
Fukuyo
,
F.
,
Fukumitsu
,
K.
, and
Morita
,
H.
,
2006
, “
Internal Modified-Layer Formation Mechanism Into Silicon With Nanosecond Laser
,”
J. Achiev. Mater. Manuf. Eng.
,
17
, pp.
381
384
. 10.1504/ijcmsse.2007.017923
244.
Nara
,
Y.
, and
Kiyota
,
H.
,
2018
, “
Direct Observation of Internal Void-Formation in Stealth Dicing
,”
Proceedings of SPIE, Laser-Based Micro-Nanoprocessing XII
,
San Francisco, CA
,
Jan. 27-Feb. 1
.
245.
Verburg
,
P. C.
,
Smillie
,
L. A.
,
Römer
,
G. R. B. E.
,
Haberl
,
B.
,
Bradby
,
J. E.
,
Williams
,
J. S.
, and
Huis in ‘t Veld
,
A. J.
,
2015
, “
Crystal Structure of Laser-Induced Subsurface Modifications in Si
,”
Appl. Phys. A
,
120
(
2
), pp.
683
691
. 10.1007/s00339-015-9238-5
246.
Ohmura
,
E.
,
Kawahito
,
Y.
,
Fukumitsu
,
K.
,
Okuma
,
J.
, and
Morita
,
H.
,
2011
, “
Analysis of Internal Crack Propagation in Silicon Due to Permeable Pulse Laser Irradiation: Study on Processing Mechanism of Stealth Dicing
,”
Proc. SPIE 7996, Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2010, 799603 (28 February 2011); https://doi.org/10.1117/12.887431
,
St. Petersburg
,
July 5–8
.
247.
Verburg
,
P. C.
,
Römer
,
G. R. B. E.
, and
Huis in ’t Veld
,
A. J.
,
2014
, “
Two-Photon–induced Internal Modification of Silicon by Erbium-Doped Fiber Laser
,”
Opt. Express
,
22
(
18
), pp.
21958
21971
. 10.1364/OE.22.021958
248.
Li
,
Q.
,
Chambonneau
,
M.
,
Chanal
,
M.
, and
Grojo
,
D.
,
2016
, “
Quantitative-Phase Microscopy of Nanosecond Laser-Induced Micro-Modifications Inside Silicon
,”
55
, pp.
2
8
. 10.1364/ao.55.009577
249.
Chambonneau
,
M.
,
Li
,
Q.
,
Chanal
,
M.
,
Sanner
,
N.
, and
Grojo
,
D.
,
2016
, “
Writing Waveguides Inside Monolithic Crystalline Silicon With Nanosecond Laser Pulses
,”
Opt. Lett.
,
41
(
21
), pp.
4875
4878
. 10.1364/OL.41.004875
250.
Nejadmalayeri
,
A. H.
,
Herman
,
P. R.
,
Burghoff
,
J.
,
Will
,
M.
,
Nolte
,
S.
, and
Tünnermann
,
A.
,
2005
, “
Inscription of Optical Waveguides in Crystalline Silicon by Mid-Infrared Femtosecond Laser Pulses
,”
Opt. Lett.
,
30
(
9
), pp.
964
966
. 10.1364/OL.30.000964
251.
Pavlov
,
I.
,
Tokel
,
O.
,
Pavlova
,
S.
,
Kadan
,
V.
,
Makey
,
G.
,
Turnali
,
A.
,
Yavuz
,
Ö
, and
Ilday
,
,
2017
, “
Femtosecond Laser Written Waveguides Deep Inside Silicon
,”
Opt. Lett.
,
42
(
15
), p.
3028
. 10.1364/OL.42.003028
252.
Mori
,
M.
,
Shimotsuma
,
Y.
,
Sei
,
T.
,
Sakakura
,
M.
,
Miura
,
K.
, and
Udono
,
H.
,
2015
, “
Tailoring Thermoelectric Properties of Nanostructured Crystal Silicon Fabricated by Infrared Femtosecond Laser Direct Writing
,”
Phys. Status Solidi A
,
212
(
4
), pp.
715
721
. 10.1002/pssa.201431777
253.
Bhardwaj
,
V. R.
,
Simova
,
E.
,
Rajeev
,
P. P.
,
Hnatovsky
,
C.
,
Taylor
,
R. S.
,
Rayner
,
D. M.
, and
Corkum
,
P. B.
,
2006
, “
Optically Produced Arrays of Planar Nanostructures Inside Fused Silica
,”
Phys. Rev. Lett.
,
96
(
5
), p.
57404
. 10.1103/PhysRevLett.96.057404
254.
Liao
,
Y.
,
Cheng
,
Y.
,
Liu
,
C.
,
Song
,
J.
,
He
,
F.
,
Shen
,
Y.
,
Chen
,
D.
,
Xu
,
Z.
,
Fan
,
Z.
,
Wei
,
X.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
,
2013
, “
Direct Laser Writing of Sub-50 nm Nanofluidic Channels Buried in Glass for Three-Dimensional Micro-Nanofluidic Integration
,”
Lab Chip
,
13
(
8
), pp.
1626
1631
. 10.1039/c3lc41171k
255.
Grojo
,
D.
,
Mouskeftaras
,
A.
,
Delaporte
,
P.
, and
Lei
,
S.
,
2015
, “
Limitations to Laser Machining of Silicon Using Femtosecond Micro-Bessel Beams in the Infrared
,”
J. Appl. Phys.
,
117
(
15
), p.
153105
. 10.1063/1.4918669
256.
Chanal
,
M.
,
Fedorov
,
V. Y.
,
Chambonneau
,
M.
,
Clady
,
R.
,
Tzortzakis
,
S.
, and
Grojo
,
D.
,
2017
, “
Crossing the Threshold of Ultrafast Laser Writing in Bulk Silicon
,”
Nat. Commun.
,
8
(
1
), pp.
1
6
. 10.1038/s41467-017-00907-8
257.
Mingareev
,
I.
,
Gehlich
,
N.
,
Bonhoff
,
T.
,
Abdulfattah
,
A.
,
Sincore
,
A. M.
,
Kadwani
,
P.
,
Shah
,
L.
, and
Richardson
,
M.
,
2016
, “
Principles and Applications of Trans-Wafer Processing Using a 2-µm Thulium Fiber Laser
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
2567
2578
. 10.1007/s00170-015-7870-z
258.
Lei
,
S.
,
Grojo
,
D.
,
Ma
,
J.
,
Yu
,
X.
, and
Wu
,
H.
,
2016
, “
Femtosecond Laser Backside Ablation of Gold Film on Silicon Substrate
,”
Procedia Manuf.
,
5
, pp.
594
608
. 10.1016/j.promfg.2016.08.049
259.
Ito
,
Y.
,
Sakashita
,
H.
,
Suzuki
,
R.
,
Uewada
,
M.
,
Luong
,
K. P.
, and
Tanabe
,
R.
,
2014
, “
Modification and Machining on Back Surface of a Silicon Substrate by Femtosecond Laser Pulses at 1552 nm
,”
J. Laser Micro/Nanoeng.
,
9
(
2
), pp.
98
102
. 10.2961/jlmn.2014.02.0004
260.
Kadan
,
V.
,
Pavlova
,
S.
,
Pavlov
,
I.
,
Rezaei
,
H.
,
Ilday
,
Ö
, and
Blonskyi
,
I.
,
2018
, “
Spatio-Temporal Dynamics of Femtosecond Laser Pulses at 1550 nm Wavelength in Crystal Silicon
,”
Appl. Phys. A
,
124
(
8
), p.
560
. 10.1007/s00339-018-1986-6
261.
Zavedeev
,
E. V.
,
Kononenko
,
V. V.
, and
Konov
,
V. I.
,
2016
, “
Delocalization of Femtosecond Laser Radiation in Crystalline Si in the Mid-IR Range
,”
Laser Phys.
,
26
(
1
), p.
16101
. 10.1088/1054-660X/26/1/016101
262.
He
,
F.
,
Yu
,
J.
,
Tan
,
Y.
,
Chu
,
W.
,
Zhou
,
C.
,
Cheng
,
Y.
, and
Sugioka
,
K.
,
2017
, “
Tailoring Femtosecond 1.5-µm Bessel Beams for Manufacturing High-Aspect-Ratio Through-Silicon Vias
,”
Sci. Rep.
,
7
, pp.
1
9
. 10.1038/srep40785
263.
Kämmer
,
H.
,
Matthäus
,
G.
,
Nolte
,
S.
,
Chanal
,
M.
,
Utéza
,
O.
, and
Grojo
,
D.
,
2018
, “
In-Volume Structuring of Silicon Using Picosecond Laser Pulses
,”
Appl. Phys. A
,
124
(
4
), p.
302
. 10.1007/s00339-018-1715-1
264.
Sun
,
H.-B.
, and
Kawata
,
S.
,
2004
, “
Two-Photon Photopolymerization and 3D Lithographic Microfabrication
,”
Adv. Polym. Sci.
,
170
, pp.
169
273
. 10.1007/b94405
265.
Malinauskas
,
M.
,
Farsari
,
M.
,
Piskarskas
,
A.
, and
Juodkazis
,
S.
,
2013
, “
Ultrafast Laser Nanostructuring of Photopolymers: A Decade of Advances
,”
Phys. Rep.
,
533
(
1
), pp.
1
31
. 10.1016/j.physrep.2013.07.005
266.
Hohmann
,
J. K.
,
Renner
,
M.
,
Waller
,
E. H.
, and
von Freymann
,
G.
,
2015
, “
Three-Dimensional µ-Printing: An Enabling Technology
,”
Adv. Opt. Mater.
,
3
(
11
), pp.
488
1507
. 10.1002/adom.201500328
267.
Xing
,
J.-F.
,
Zheng
,
M.-L.
, and
Duan
,
X.-M.
,
2015
, “
Two-Photon Polymerization Microfabrication of Hydrogels: An Advanced 3D Printing Technology for Tissue Engineering and Drug Delivery
,”
Chem. Soc. Rev.
,
44
(
15
), pp.
5031
5039
. 10.1039/C5CS00278H
268.
LaFratta
,
C. N.
, and
Baldacchini
,
T.
,
2017
, “
Two-Photon Polymerization Metrology: Characterization Methods of Mechanisms and Microstructures
,”
Micromachines
,
8
(
4
), p.
101
. 10.3390/mi8040101
269.
Li
,
L.
, and
Fourkas
,
J.
,
2007
, “
The Inherent Optical Nonlinearity of Multiphoton Absorption Allows Such Polymerization
,”
Mater. Today
,
10
(
6
), pp.
30
37
. 10.1016/S1369-7021(07)70130-X
270.
LaFratta
,
C. N.
,
Fourkas
,
J. T.
,
Baldacchini
,
T.
, and
Farrer
,
R. A.
,
2007
, “
Multiphoton Fabrication
,”
Angew. Chem. Int. Ed.
,
46
(
33
), pp.
6238
6258
. 10.1002/anie.200603995
271.
Williams
,
H. E.
,
Diaz
,
C.
,
Padilla
,
G.
,
Hernandez
,
F. E.
, and
Kuebler
,
S. M.
,
2017
, “
Order of Multiphoton Excitation of Sulfonium Photo-Acid Generators Used in Photoresists Based on SU-8
,”
J. Appl. Phys.
,
121
(
22
), p.
223104
. 10.1063/1.4984828
272.
Malinauskas
,
M.
,
Danilevičius
,
P.
, and
Juodkazis
,
S.
,
2011
, “
Three-Dimensional Micro-/Nano-Structuring via Direct Write Polymerization With Picosecond Laser Pulses
,”
Opt. Express
,
19
(
6
), p.
5602
. 10.1364/OE.19.005602
273.
Göppert-Mayer
,
M.
,
1931
, “
Über Elementarakte Mit Zwei Quantensprüngen
,”
Ann. Phys.
,
9
(
3
), pp.
273
294
. 10.1002/andp.19314010303
274.
Kaiser
,
W.
, and
Garrett
,
C. G. B.
,
1961
, “
Two-Photon Excitation in CaF2: Eu2 +
,”
Phys. Rev. Lett.
,
7
(
6
), pp.
229
231
. 10.1103/PhysRevLett.7.229
275.
Cabrera
,
M.
,
Jezequel
,
J. Y.
, and
Andre
,
J. C.
,
1990
,
Lasers in Polymer Science and Technology: Applications
, Ed. Fouassier, J.P. and Rabek, J.F, Vol.
3
,
CRC Press
,
Boca Raton, Florida
, p.
73
.
276.
Strickler
,
J. H.
, and
Webb
,
W. W.
,
1991
, “
Two-Photon Excitation in Laser Scanning Fluorescence Microscopy
,”
Proceedings of SPIE 1398, CAN-AM Eastern ‘90
,
Rochester, NY
,
Oct. 4–5
.
277.
Maruo
,
S.
,
Nakamura
,
O.
, and
Kawata
,
S.
,
1997
, “
Three-Dimensional Microfabrication With Two-Photon-Absorbed Photopolymerization
,”
Opt. Lett.
,
22
(
2
), pp.
132
134
. 10.1364/OL.22.000132
278.
Kawata
,
S.
,
Sun
,
H. B.
,
Tanaka
,
T.
, and
Takada
,
K.
,
2001
, “
Finer Features for Functional Microdevices
,”
Nature Comm.
,
412
(
6848
), pp.
697
698
. 10.1038/35089130
279.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
,
1995
, “
Laser-Induced Damage in Dielectrics With Nanosecond to Subpicosecond Pulses
,”
Phys. Rev. Lett.
,
74
(
12
), pp.
2248
2251
. 10.1103/PhysRevLett.74.2248
280.
Grojo
,
D.
,
Gertsvolf
,
M.
,
Lei
,
S.
,
Barillot
,
T.
,
Rayner
,
D. M.
, and
Corkum
,
P. B.
,
2010
, “
Exciton-Seeded Multiphoton Ionization in Bulk SiO2
,”
Phys. Rev. B
,
81
(
21
), pp.
3
6
. 10.1103/physrevb.81.212301
281.
Malinauskas
,
M.
,
Žukauskas
,
A.
,
Bičkauskaitė
,
G.
,
Gadonas
,
R.
, and
Juodkazis
,
S.
,
2010
, “
Mechanisms of Three-Dimensional Structuring of Photo-Polymers by Tightly Focussed Femtosecond Laser Pulses
,”
Opt. Express
,
18
(
10
), p.
10209
. 10.1364/OE.18.010209
282.
Liaros
,
N.
, and
Fourkas
,
J. T.
,
2017
, “
The Characterization of Absorptive Nonlinearities
,”
Laser Photonics Rev.
,
11
(
5
), pp.
1
21
. 10.1002/lpor.201700106
283.
Tomova
,
Z.
,
Liaros
,
N.
,
Gutierrez Razo
,
S. A.
,
Wolf
,
S. M.
, and
Fourkas
,
J. T.
,
2016
, “
In Situ Measurement of the Effective Nonlinear Absorption Order in Multiphoton Photoresists
,”
Laser Photonics Rev.
,
10
(
5
), pp.
849
854
. 10.1002/lpor.201600079
284.
Vizsnyiczai
,
G.
,
Kelemen
,
L.
, and
Ormos
,
P.
,
2014
, “
Holographic Multi-Focus 3D Two-Photon Polymerization With Real-Time Calculated Holograms
,”
Opt. Express
,
22
(
20
), pp.
24217
24223
. 10.1364/OE.22.024217
285.
Yu
,
X.
,
Zhang
,
M.
, and
Lei
,
S.
,
2017
, “
Multiphoton Polymerization Using Femtosecond Bessel Beam for Layerless Three-Dimensional Printing
,”
J. Micro Nano-Manuf.
,
6
(
1
), pp.
10901
10908
. 10.1115/1.4038453
286.
Yu
,
X.
,
Todi
,
A.
, and
Tang
,
H.
,
2018
, “
Bessel Beam Generation Using a Segmented Deformable Mirror
,”
Appl. Opt.
,
57
(
16
), p.
4677
. 10.1364/AO.57.004677
287.
Jiang
,
L.
,
Xiong
,
W.
,
Zhou
,
Y.
,
Liu
,
Y.
,
Huang
,
X.
,
Li
,
D.
,
Baldacchini
,
T.
,
Jiang
,
L.
, and
Lu
,
Y.
,
2016
, “
Performance Comparison of Acrylic and Thiol-Acrylic Resins in Two-Photon Polymerization
,”
Opt. Express
,
24
(
12
), pp.
13687
13701
. 10.1364/OE.24.013687
288.
Barner-Kowollik
,
C.
,
Bastmeyer
,
M.
,
Blasco
,
E.
,
Patrick
,
M.
,
Delaittre
,
G.
,
Richter
,
B.
,
Müller
,
P.
,
Richter
,
B.
, and
Wegener
,
M.
,
2017
, “
3D Laser Micro- and Nano-Printing: Challenges for Chemistry
,”
Angew. Chem. Int. Ed.
,
56
(
50
), pp.
15828
15845
. 10.1002/anie.201704695
289.
Xiong
,
W.
,
Zhou
,
Y. S.
,
He
,
X. N.
,
Gao
,
Y.
,
Mahjouri-Samani
,
M.
,
Jiang
,
L.
,
Baldacchini
,
T.
, and
Lu
,
Y. F.
,
2012
, “
Simultaneous Additive and Subtractive Three-Dimensional Nanofabrication Using Integrated Two-Photon Polymerization and Multiphoton Ablation
,”
Light Sci. Appl.
,
1
(
4
), p.
e6
. 10.1038/lsa.2012.6
290.
Nie
,
B.
,
Yang
,
L.
,
Huang
,
H.
,
Bai
,
S.
,
Wan
,
P.
, and
Liu
,
J.
,
2015
, “
Femtosecond Laser Additive Manufacturing of Iron and Tungsten Parts
,”
Appl. Phys. A Mater. Sci. Process.
,
119
(
3
), pp.
1075
1080
. 10.1007/s00339-015-9070-y
291.
Kaden
,
L.
,
Matthäus
,
G.
,
Ullsperger
,
T.
,
Engelhardt
,
H.
,
Rettenmayr
,
M.
,
Tünnermann
,
A.
, and
Nolte
,
S.
,
2017
, “
Selective Laser Melting of Copper Using Ultrashort Laser Pulses
,”
Appl. Phys. A
,
123
(
9
), p.
596
. 10.1007/s00339-017-1189-6
292.
Kaden
,
L.
,
Seyfarth
,
B.
,
Ullsperger
,
T.
,
Matthäus
,
G.
, and
Nolte
,
S.
,
2018
, “
Selective Laser Melting of Copper Using Ultrashort Laser Pulses at Different Wavelengths
,”
Proceedings of SPIE 10523, Laser 3D Manufacturing V
,
San Francisco, CA
,
Jan. 29–Feb. 1
, p.
1052312
.
293.
Ovsianikov
,
A.
,
Chichkov
,
B.
,
Mente
,
P.
,
Monteiro-Riviere
,
N. A.
,
Doraiswamy
,
A.
, and
Narayan
,
R. J.
,
2007
, “
Two Photon Polymerization of Polymer Ceramic Hybrid Materials for Transdermal Drug Delivery
,”
Int. J. Appl. Ceram. Technol.
,
4
(
1
), pp.
22
29
. 10.1111/j.1744-7402.2007.02115.x
294.
Mingareev
,
I.
,
Bonhoff
,
T.
,
El-Sherif
,
A. F.
,
Meiners
,
W.
,
Kelbassa
,
I.
,
Biermann
,
T.
, and
Richardson
,
M.
,
2013
, “
Femtosecond Laser Post-Processing of Metal Parts Produced by Laser Additive Manufacturing
,”
J. Laser Appl.
,
25
(
5
), p.
52009
. 10.2351/1.4824146
295.
Hubler
,
G. K.
,
1992
, “
Pulsed Laser Deposition
,”
MRS Bull.
,
17
(
2
), pp.
26
29
. 10.1557/S0883769400040586
296.
Piqué
,
A.
,
Auyeung
,
R. C. Y.
,
Kim
,
H.
,
Charipar
,
N. A.
, and
Mathews
,
S. A.
,
2016
, “
Laser 3D Micro-Manufacturing
,”
J. Phys. D: Appl. Phys.
,
49
(
22
), p.
223001
. 10.1088/0022-3727/49/22/223001
297.
Yanik
,
M. F.
,
Cinar
,
H.
,
Cinar
,
H. N.
,
Chisholm
,
A. D.
,
Jin
,
Y. S.
, and
Ben-Yakar
,
A.
,
2004
, “
Neurosurgery—Functional Regeneration After Laser Axotomy
,”
Nature Comm.
,
432
(
7019
), pp.
822
822
. 10.1038/432822a
298.
Watanabe
,
W.
,
Arakawa
,
N.
,
Matsunaga
,
S.
,
Higashi
,
T.
,
Fukui
,
K.
,
Isobe
,
K.
, and
Itoh
,
K.
,
2004
, “
Femtosecond Laser Disruption of Subcellular Organelles in a Living Cell
,”
Opt. Express
,
12
(
18
), pp.
4203
4213
. 10.1364/OPEX.12.004203
299.
Heisterkamp
,
A.
,
Ripken
,
T.
,
Mamom
,
T.
,
Drommer
,
W.
,
Welling
,
H.
,
Ertmer
,
W.
, and
Lubatschowski
,
H.
,
2002
, “
Nonlinear Side Effects of fs Pulses Inside Corneal Tissue During Photodisruption
,”
Appl. Phys. B
,
74
(
4–5
), pp.
419
425
. 10.1007/s003400200825
300.
Shen
,
N.
,
Datta
,
D.
,
Schaffer
,
C. B.
,
LeDuc
,
P.
,
Ingber
,
D. E.
, and
Mazur
,
E.
,
2005
, “
Ablation of Cytoskeletal Filaments and Mitochondria in Live Cells Using a Femtosecond Laser Nanoscissor
,”
Mech. Chem. Biosyst.
,
2
(
1
), pp.
17
25
.
301.
Guo
,
Y.
, and
Vukelić
,
S.
,
2015
, “
Evolution of Cavitation Bubbles in Corneal Stroma Subject to Micro-Joule Femtosecond Laser Pulses
,”
Proceedings of SPIE Optical Interactions With Tissue and Cells
,
San Francisco, CA
,
Feb. 8–10
, p.
932106
.
302.
König
,
K.
,
2000
, “
Robert Feulgen Prize Lecture. Laser Tweezers and Multiphoton Microscopes in Life Sciences
,”
Histochem. Cell Biol.
,
114
(
2
), pp.
79
92
. 10.1007/s004180000179
303.
Tirlapur
,
U. K.
, and
König
,
K.
,
2002
, “
Cell Biology—Targeted Transfection by Femtosecond Laser
,”
Nature Comm.
,
418
(
6895
), pp.
290
291
. 10.1038/418290a
304.
Zeira
,
E.
,
Manevitch
,
A.
,
Khatchatouriants
,
A.
,
Pappo
,
O.
,
Hyam
,
E.
,
Darash-Yahana
,
M.
,
Tavor
,
E.
,
Honigman
,
A.
,
Lewis
,
A.
, and
Galun
,
E.
,
2003
, “
Femtosecond Infrared Laser-an Efficient and Safe in Vivo Gene Delivery System for Prolonged Expression
,”
Mol. Ther.
,
8
(
2
), pp.
342
350
. 10.1016/S1525-0016(03)00184-9
305.
Smith
,
N. I.
,
Fujita
,
K.
,
Kaneko
,
T.
,
Katoh
,
K.
,
Nakamura
,
O.
,
Kawata
,
S.
, and
Takamatsu
,
T.
,
2001
, “
Generation of Calcium Waves in Living Cells by Pulsed-Laser-Induced Photodisruption
,”
Appl. Phys. Lett.
,
79
(
8
), pp.
1208
1210
. 10.1063/1.1397255
306.
Oraevsky
,
A. A.
,
Da Silva
,
L. B.
,
Rubenchik
,
A. M.
,
Feit
,
M. D.
,
Glinsky
,
M. E.
,
Perry
,
M. D.
,
Mammini
,
B. M.
,
Small
,
W.
, and
Stuart
,
B. C.
,
1996
, “
Plasma Mediated Ablation of Biological Tissues With Nanosecond-to-Femtosecond Laser Pulses: Relative Role of Linear and Nonlinear Absorption
,”
IEEE J. Sel. Top. Quantum Electron.
,
2
(
4
), pp.
801
809
. 10.1109/2944.577302
307.
Oraevsky
,
A. A.
,
Jacques
,
S. L.
,
Esenaliev
,
R. O.
, and
Tittel
,
F. K.
,
1996
, “
Pulsed Laser Ablation of Soft Tissues, Gels, and Aqueous Solutions at Temperatures Below 100 Degrees C
,”
Lasers Surg. Med.
,
18
(
3
), pp.
231
240
. 10.1002/(SICI)1096-9101(1996)18:3<231::AID-LSM3>3.0.CO;2-T
308.
Esenaliev
,
R. O.
,
Oraevsky
,
A. A.
,
Jacques
,
S. L.
, and
Tittel
,
F. K.
,
1996
, “
Effect of Tensile Stress Amplitude and Temporal Characteristics on Threshold of Cavitation-Driven Ablation
,”
Proceedings of, 2681, Laser-Tissue Interaction Vii
,
San Jose, CA
,
May 7
, pp.
326
333
.
309.
Chung
,
S. H.
, and
Mazur
,
E.
,
2009
, “
Surgical Applications of Femtosecond Lasers
,”
J. Biophotonics
,
2
(
10
), pp.
557
572
. 10.1002/jbio.200910053
310.
Chung
,
S. H.
,
Schmalz
,
A.
,
Ruiz
,
R. C.
,
Gabel
,
C. V.
, and
Mazur
,
E.
,
2013
, “
Femtosecond Laser Ablation Reveals Antagonistic Sensory and Neuroendocrine Signaling That Underlie C. Elegans Behavior and Development
,”
Cell Rep.
,
4
(
2
), pp.
316
326
. 10.1016/j.celrep.2013.06.027
311.
König
,
K.
,
Riemann
,
I.
, and
Fritzsche
,
W.
,
2001
, “
Nanodissection of Human Chromosomes With Near-Infrared Femtosecond Laser Pulses
,”
Opt. Lett.
,
26
(
11
), pp.
819
821
. 10.1364/OL.26.000819
312.
Konig
,
K.
,
Riemann
,
I.
,
Krauss
,
O.
, and
Fritzsche
,
W.
,
2002
, “
Nanodissection of Human Chromosomes and Ultraprecise Eye Surgery With Nanojoule Near Infrared Femtosecond Laser Pulses
,”
Commercial and Biomedical Applications of Ultrafast and Free-Electron Lasers
,
San Jose, CA
,
Jan. 20–25
, pp.
11
22
.
313.
Vogel
,
A.
,
Noack
,
J.
,
Hüttman
,
G.
, and
Paltauf
,
G.
,
2005
, “
Mechanisms of Femtosecond Laser Nanosurgery of Cells and Tissues
,”
Appl. Phys. B
,
81
(
8
), pp.
1015
1047
. 10.1007/s00340-005-2036-6
314.
Juhasz
,
T.
,
Kurtz
,
R.
,
Raksi
,
F.
,
Suarez
,
C.
,
Horvath
,
C.
, and
Spooner
,
G.
,
2002
, “
The Femtosecond Blade: Applications in Corneal Surgery
,”
Opt. Photonics News
,
13
(
1
), pp.
24
29
. 10.1364/OPN.13.1.000024
315.
Soong
,
H. K.
, and
Malta
,
J. B.
,
2009
, “
Femtosecond Lasers in Ophthalmology
,”
Am. J. Ophthalmol.
,
147
(
2
), pp.
189
197
. 10.1016/j.ajo.2008.08.026
316.
Wei
,
S.
, and
Wang
,
Y.
,
2013
, “
Comparison of Corneal Sensitivity Between FS-LASIK and Femtosecond Lenticule Extraction (ReLEx Flex) or Small-Incision Lenticule Extraction (ReLEx Smile) for Myopic Eyes
,”
Graefes Archive Clin. Exp. Ophthalmol.
,
251
(
10
), pp.
1645, 2495–2497
. 10.1007/s00417-013-2361-0
317.
Sidhu
,
M. S.
,
Choi
,
M. Y.
,
Woo
,
S. Y.
,
Lee
,
H. K.
,
Lee
,
H. S.
,
Kim
,
K. J.
,
Jeoung
,
S. C.
,
Choi
,
J. S.
,
Joo
,
C. K.
, and
Park
,
I. H.
,
2014
, “
Femtosecond Laser-Assisted Selective Reduction of Neovascularization in Rat Cornea
,”
Lasers Med. Sci.
,
29
(
4
), pp.
1417
1427
. 10.1007/s10103-014-1545-0
318.
Demirok
,
A.
,
Ozgurhan
,
E. B.
,
Agca
,
A.
,
Kara
,
N.
,
Bozkurt
,
E.
,
Cankaya
,
K. I.
, and
Yilmaz
,
O. F.
,
2013
, “
Corneal Sensation After Corneal Refractive Surgery With Small Incision Lenticule Extraction
,”
Optom. Vis. Sci.
,
90
(
10
), pp.
1040
1047
. 10.1097/OPX.0b013e31829d9926
319.
Juhasz
,
T.
,
Kastis
,
G. A.
,
Suárez
,
C.
,
Bor
,
Z.
, and
Bron
,
W. E.
,
1996
, “
Time-Resolved Observations of Shock Waves and Cavitation Bubbles Generated by Femtosecond Laser Pulses in Corneal Tissue and Water
,”
Lasers Surg. Med.
,
19
(
1
), pp.
23
31
. 10.1002/(sici)1096-9101(1996)19:1<23::aid-lsm4>3.0.co;2-s
320.
Juhasz
,
E.
,
Filkorn
,
T.
,
Kranitz
,
K.
,
Sandor
,
G. L.
,
Gyenes
,
A.
, and
Nagy
,
Z. Z.
,
2014
, “
Analysis of Planned and Postoperatively Measured Flap Thickness After LASIK Using the LenSx Multifunctional Femtosecond Laser System
,”
J. Refract. Surg.
,
30
(
9
), pp.
622
626
. 10.3928/1081597X-20140827-01
321.
Lubatschowski
,
H.
,
2008
, “
Overview of Commercially Available Femtosecond Lasers in Refractive Surgery
,”
J. Refract. Surg.
,
24
(
1
), pp.
S102
7
. 10.3928/1081597X-20080101-18
322.
Netto
,
M. V.
,
Mohan
,
R. R.
,
Medeiros
,
F. W.
,
Dupps
,
W. J.
, Jr.
,
Sinha
,
S.
,
Krueger
,
R. R.
,
Stapleton
,
W. M.
,
Rayborn
,
M.
,
Suto
,
C.
, and
Wilson
,
S. E.
,
2007
, “
Femtosecond Laser and Microkeratome Corneal Flaps: Comparison of Stromal Wound Healing and Inflammation
,”
J. Refract. Surg.
,
23
(
7
), pp.
667
676
. 10.3928/1081-597X-20070901-05
323.
Wang
,
C.
,
Fomovsky
,
M.
,
Miao
,
G.
,
Zyablitskaya
,
M.
, and
Vukelic
,
S.
,
2018
, “
Femtosecond Laser Crosslinking of the Cornea for Noninvasive Vision Correction
,”
Nat. Photonics
,
12
(
7
), pp.
416
422
. 10.1038/s41566-018-0174-8
324.
Fomovsky
,
M.
,
Wang
,
C.
,
Roland-Hall
,
J.
,
Paik
,
D. C.
,
Trokel
,
S. L.
, and
Vukelic
,
S.
,
2017
, “
A New Paradigm for Use of Ultrafast Lasers in Ophthalmology for Enhancement of Corneal Mechanical Properties and Permanent Correction of Refractive Errors
,”
Proc. SPIE
,
10066
, p.
100660Y
. 10.1117/12.2254945
325.
Durney-Antonelli
,
K.
,
Wang
,
C.
,
Zimmerman
,
B.
,
Sonar
,
S.
,
Montegut
,
L.
,
Bolene
,
M. A.
,
Guan
,
K.
,
Hung
,
C. T.
,
Ateshian
,
G. A.
, and
Vukelić
,
S.
,
2018
, “
Novel Laser Treatment Modality for Crosslinking and Strengthening Early-Stage Osteoarthritic Cartilage
,”
8th World Congress of Biomechanics
,
Dublin, Ireland
,
July 8–12
, p.
00400
.
326.
Wang
,
C.
,
Durney
,
K. M.
,
Fomovsky
,
M.
,
Yu
,
J.
,
Roland-Hall
,
J.
,
Ateshian
,
G. A.
, and
Vukelić
,
S.
,
2017
, “
Femtosecond Laser Irradiation as Novel Paradigm for Treatment of Early Osteoarthritis
,”
Annual Meeting of the Orthopaedic Research Society (ORS)
,
San Diego, CA
,
Mar. 19–22
.
327.
Engstrom
,
D. S.
,
Porter
,
B.
,
Pacios
,
M.
, and
Bhaskaran
,
H.
,
2014
, “
Additive Nanomanufacturing—A Review
,”
J. Mater. Res.
,
29
(
17
), p.
1792
1816
. 10.1557/jmr.2014.159
328.
Liddle
,
J. A.
, and
Gallatin
,
G. M.
,
2016
, “
Nanomanufacturing: A Perspective
,”
ACS Nano
,
10
(
3
), p.
2995
3014
. 10.1021/acsnano.5b03299
329.
Chong
,
T. C.
,
Hong
,
M. H.
, and
Shi
,
L. P.
,
2010
, “
Laser Precision Engineering: From Microfabrication to Nanoprocessing
,”
Laser Photonics Rev.
,
4
(
1
), p.
123
143
. 10.1002/lpor.200810057
330.
Huber
,
C.
,
Trügler
,
A.
,
Hohenester
,
U.
,
Prior
,
Y.
, and
Kautek
,
W.
,
2014
, “
Optical Near-Field Excitation at Commercial Scanning Probe Microscopy Tips: A Theoretical and Experimental Investigation
,”
Phys. Chem. Chem. Phys.
,
16
(
6
), p.
2289
2296
. 10.1039/C3CP51730F
331.
Grigoropoulos
,
C. P.
,
Hwang
,
D. J.
, and
Chimmalgi
,
A.
,
2007
, “
Nanometer-Scale Laser Direct-Write Using Near-Field Optics
,”
MRS Bull.
,
32
(
1
), pp.
16
22
. 10.1557/mrs2007.10
332.
Fischer
,
J.
, and
Wegener
,
M.
,
2013
, “
Three-Dimensional Optical Laser Lithography Beyond the Diffraction Limit
,”
Laser Photonics Rev.
,
7
(
1
), pp.
22
44
. 10.1002/lpor.201100046
333.
Serbin
,
J.
,
Ovsianikov
,
A.
, and
Chichkov
,
B.
,
2004
, “
Fabrication of Woodpile Structures by Two-Photon Polymerization and Investigation of Their Optical Properties
,”
Opt. Exp.
,
12
(
21
), p.
5221
. 10.1364/OPEX.12.005221
334.
Tian
,
Y.
,
Kwon
,
H. J.
,
Shin
,
Y. C.
, and
King
,
G. B.
,
2014
, “
Fabrication and Characterization of Photonic Crystals by Two-Photon Polymerization Using a Femtosecond Laser
,”
ASME J. Micro Nano-Manuf.
,
2
(
3
), p.
034501
. 10.1115/1.4027737
335.
Zheng
,
C.
,
Hu
,
A.
,
Chen
,
T.
,
Oakes
,
K.
, and
Liu
,
S.
,
2015
, “
Femtosecond Laser Internal Manufacturing of Three-Dimensional Microstructure Devices
,”
Appl. Phys. A
,
121
(
1
), p.
163
177
. 10.1007/s00339-015-9403-x
336.
Fischer
,
J.
,
von Freymann
,
G.
, and
Wegener
,
M.
,
2010
, “
The Materials Challenge in Diffraction-Unlimited Direct-Laser-Writing Optical Lithography
,”
Adv. Mater.
,
22
(
32
), pp.
3578
3582
. 10.1002/adma.201000892
337.
Fischer
,
J.
, and
Wegener
,
M.
,
2012
, “
Ultrafast Polymerization Inhibition by Stimulated Emission Depletion for Three-Dimensional Nanolithography
,”
Adv. Opt. Mater.
,
24
(
10
), p.
OP65
. 10.1002/adma.201103758
338.
Li
,
L.
,
Gattass
,
R. G.
,
Gershgoren
,
E.
,
Hwang
,
H.
, and
Fourkas
,
J.
,
2009
, “
Achieving 1/20 Resolution by One-Color Initiation and Deactivation of Polymerization
,”
Science
,
324
(
5929
), pp.
910
913
. 10.1126/science.1168996
339.
Scott
,
T.
,
Kowalski
,
B. A.
,
Sullivan
,
A. C.
,
Bowman
,
C. N.
, and
McLeod
,
R. R.
,
2009
, “
Two-Color Single Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography
,”
Science
,
324
(
5929
), pp.
913
917
. 10.1126/science.1167610
340.
Harke
,
B.
,
Keller
,
J.
,
Ullal
,
C. K.
,
Westphal
,
V.
,
Schönle
,
A.
, and
Hell
,
S. W.
,
2008
, “
Resolution Scaling in STED Microscopy
,”
Opt. Exp.
,
16
(
6
), p.
4154
. 10.1364/OE.16.004154
341.
Harke
,
B.
,
Bianchini
,
P.
,
Brandi
,
F.
, and
Diaspro
,
A.
,
2012
, “
Photopolymerization Inhibition Dynamics for sub-Diffraction Direct Laser Writing Lithography
,”
ChemPhysChem
,
13
(
6
), pp.
1429
1434
. 10.1002/cphc.201200006
342.
Gan
,
Z.
,
Cao
,
Y.
,
Evans
,
R. A.
, and
Gu
,
M.
,
2013
, “
Three-Dimensional Deep Sub-Diffraction Optical Beam Lithography With 9 nm Feature Size
,”
Nature Comm.
,
4
(
1
), p.
2061
. 10.1038/ncomms3061
343.
Fischer
,
J.
,
Ergin
,
T.
, and
Wegener
,
M.
,
2011
, “
Three-Dimensional Polarization—Independent Visible-Frequency Carpet Invisibility Cloak
,”
Opt. Lett.
,
36
(
11
), p.
2059
. 10.1364/OL.36.002059
344.
Cao
,
Y.
,
Li
,
X.
, and
Gu
,
M.
,
2011
, “
Super-Resolution Nanofabrication Either Metal-Ion Doped Hybrid Material Through an Optical Dual-Beam Approach
,”
Appl. Phys. Lett.
,
105
(
26
), p.
263102
. 10.1063/1.4905056
345.
Frölich
,
A.
,
Fischer
,
J.
,
Zebrowski
,
T.
,
Busch
,
K.
, and
Wegener
,
M.
,
2013
, “
Titania Woodpiles With Compete Three-Dimensional Photonic Bandgaps in the Visible
,”
Adv. Mater.
,
25
(
26
), pp.
3588
3592
. 10.1002/adma.201300896
346.
Bechtel
,
J. H.
,
Lee Smith
,
W.
, and
Bloembergen
,
N.
,
1977
, “
Two-Photon Photoemission From Metals Induced by Picosecond Laser Pulses
,”
Phys. Rev. B
,
15
(
10
), pp.
4557
4563
. 10.1103/PhysRevB.15.4557
347.
Mao
,
S. S.
,
Mao
,
X. L.
,
Greif
,
R.
, and
Russo
,
R. E.
,
1998
, “
Simulation of Infrared Picosecond Laser-Induced Electron Emission From Semiconductors
,”
Appl. Surf. Sci.
,
127–129
, pp.
206
211
. 10.1016/S0169-4332(97)00633-8
348.
Rethfeld
,
B.
,
Sokolowski-Tinten
,
K.
,
Von Der Linde
,
D.
, and
Anisimov
,
S. I.
,
2004
, “
Timescales in the Response of Materials to Femtosecond Laser Excitation
,”
Appl. Phys. A
,
79
(
4–6
), pp.
767
769
. 10.1007/s00339-004-2805-9
349.
Zhao
,
X.
, and
Shin
,
Y. C.
,
2012
, “
A Two-Dimensional Comprehensive Hydrodynamic Model for Femtosecond Laser Pulse Interaction With Metals
,”
J. Phys. D: Appl. Phys.
,
45
(
10
), p.
105201
. 10.1088/0022-3727/45/10/105201
350.
Hu
,
W.
,
Shin
,
Y. C.
, and
King
,
G.
,
2011
, “
Early-Stage Plasma Dynamics With Air Ionization During Ultrashort Laser Ablation of Metal
,”
Phys. Plasmas
,
18
(
9
), p.
093302
. 10.1063/1.3633067
351.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel-man
,
T. L.
,
1974
, “
Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses
,”
J. Exp. Theor. Phys.
,
39
(
2
), pp.
375
377
.
352.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
835
841
. 10.1115/1.2911377
353.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
8
16
. 10.1115/1.2822329
354.
Chen
,
J. K.
,
Tzou
,
D. Y.
, and
Beraun
,
J. E.
,
2006
, “
A Semiclassical Two-Temperature Model for Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
307
316
. 10.1016/j.ijheatmasstransfer.2005.06.022
355.
Bulgakova
,
N. M.
,
Stoian
,
R.
,
Rosenfeld
,
A.
,
Hertel
,
I. V.
,
Marine
,
W.
, and
Campbell
,
E. E. B.
,
2005
, “
A General Continuum Approach to Describe Fast Electronic Transport in Pulsed Laser Irradiated Materials: The Problem of Coulomb Explosion
,”
Appl. Phys. A
,
81
(
2
), pp.
345
356
. 10.1007/s00339-005-3242-0
356.
Wu
,
B.
, and
Shin
,
Y. C.
,
2007
, “
A Simple Model for High Fluence Ultra-Short Pulsed Laser Metal Ablation
,”
Appl. Surf. Sci.
,
253
(
8
), pp.
4079
4084
. 10.1016/j.apsusc.2006.09.007
357.
Wu
,
B.
, and
Shin
,
Y. C.
,
2009
, “
A Simplified Model for High Fluence Ultra-Short Pulsed Laser Ablation of Semiconductors and Dielectrics
,”
Appl. Surf. Sci.
,
255
(
9
), pp.
4996
5002
. 10.1016/j.apsusc.2008.12.051
358.
Chen
,
J. K.
, and
Beraun
,
J. E.
,
2003
, “
Modelling of Ultrashort Laser Ablation of Gold Films in Vacuum
,”
J. Opt. A: Pure Appl. Opt.
,
5
(
3
), pp.
168
173
. 10.1088/1464-4258/5/3/304
359.
Jia
,
X.
, and
Zhao
,
X.
,
2019
, “
Numerical Study of Material Decomposition in Ultrafast Laser Interaction With Metals
,”
Appl. Surf. Sci.
,
463
, pp.
781
790
. 10.1016/j.apsusc.2018.08.225
360.
Larsen
,
J. T.
, and
Lane
,
S. M.
,
1994
, “
HYADES—A Plasma Hydrodynamics Code for Dense Plasma Studies
,”
J. Quant. Spectrosc. Radiat. Transfer
,
51
(
1–2
), pp.
179
186
. 10.1016/0022-4073(94)90078-7
361.
Spitzer
,
L.
, and
Härm
,
R.
,
1953
, “
Transport Phenomena in a Completely Ionized Gas
,”
Phys. Rev.
,
89
(
5
), pp.
977
981
. 10.1103/PhysRev.89.977
362.
Eidmann
,
K.
,
Meyer-ter-Vehn
,
J.
,
Schlegel
,
T.
, and
Hüller
,
S.
,
2000
, “
Hydrodynamic Simulation of Subpicosecond Laser Interaction With Solid-Density Matter
,”
Phys. Rev. E
,
62
(
1
), pp.
1202
1214
. 10.1103/physreve.62.1202
363.
Colombier
,
J. P.
,
Combis
,
P.
,
Bonneau
,
F.
,
Le Harzic
,
R.
, and
Audouard
,
E.
,
2005
, “
Hydrodynamic Simulations of Metal Ablation by Femtosecond Laser Irradiation
,”
Phys. Rev. B
,
71
(
16
), p.
165406
. 10.1103/PhysRevB.71.165406
364.
Wu
,
B.
, and
Shin
,
Y. C.
,
2007
, “
A One-Dimensional Hydrodynamic Model for Pressures Induced Near the Coating-Water Interface During Laser Shock Peening
,”
J. Appl. Phys.
,
101
(
2
), p.
023510
. 10.1063/1.2426981
365.
Wu
,
B.
, and
Shin
,
Y. C.
,
2007
, “
Two Dimensional Hydrodynamic Simulation of High Pressures Induced by High Power Nanosecond Laser-Matter Interactions Under Water
,”
J. Appl. Phys.
,
101
(
10
), p.
103514
. 10.1063/1.2734538
366.
Veysman
,
M. E.
,
Agranat
,
M. B.
,
Andreev
,
N. E.
,
Ashitkov
,
S. I.
,
Fortov
,
V. E.
,
Khishchenko
,
K. V.
,
Kostenko
,
O. F.
,
Levashov
,
P. R.
,
Ovchinnikov
,
A. V.
, and
Sitnikov
,
D. S.
,
2008
, “
Femtosecond Optical Diagnostics and Hydrodynamic Simulation of Ag Plasma Created by Laser Irradiation of a Solid Target
,”
J. Phys. B: At. Mol. Opt. Phys.
,
41
(
12
), p.
125704
. 10.1088/0953-4075/41/12/125704
367.
Wu
,
B.
,
Shin
,
Y. C.
,
Pakhal
,
H.
,
Laurendeau
,
N. M.
, and
Lucht
,
R. P.
,
2007
, “
Modeling and Experimental Verification of Plasmas Induced by High-Power Nanosecond Laser-Aluminum Interactions in Air
,”
Phys. Rev. E
,
76
(
2
), p.
026405
. 10.1103/PhysRevE.76.026405
368.
Bulgakova
,
N. M.
,
Rosenfeld
,
A.
,
Ehrentraut
,
L.
,
Stoian
,
R.
, and
Hertel
,
I. V.
,
2007
, “
Modeling of Electron Dynamics in Laser-Irradiated Solids: Progress Achieved Through a Continuum Approach and Future Prospects
,”
Proc. SPIE
,
6732
, p.
673208
. 10.1117/12.751885
369.
Chen
,
Z.
, and
Mao
,
S. S.
,
2008
, “
Femtosecond Laser-Induced Electronic Plasma at Metal Surface
,”
Appl. Phys. Lett.
,
93
(
5
), p.
051506
. 10.1063/1.2966152
370.
Zhigilei
,
L. V.
, and
Ivanov
,
D. S.
,
2005
, “
Channels of Energy Redistribution in Short-Pulse Laser Interactions With Metal Targets
,”
Appl. Surf. Sci.
,
248
(
1–4
), pp.
433
439
. 10.1016/j.apsusc.2005.03.062
371.
Zhigilei
,
L. V.
, and
Garrison
,
B. J.
,
2000
, “
Microscopic Mechanisms of Laser Ablation of Organic Solids in the Thermal and Stress Confinement Irradiation Regimes
,”
J. Appl. Phys.
,
88
(
3
), pp.
1281
1298
. 10.1063/1.373816
372.
Perez
,
D.
, and
Lewis
,
L. J.
,
2004
, “
Thermodynamic Evolution of Materials During Laser Ablation Under Pico and Femtosecond Pulses
,”
Appl. Phys. A
,
79
(
4–6
), pp.
987
990
. 10.1007/s00339-004-2611-4
373.
Schäfer
,
C.
,
Urbassek
,
H. M
, and
Zhigilei
,
L. V.
,
2002
, “
Metal Ablation by Picosecond Laser Pulses: A Hybrid Simulation
,”
Phys. Rev. B
,
66
(
11
), p.
115404
. 10.1103/PhysRevB.66.115404
374.
Lorazo
,
P.
,
Lewis
,
L. J.
, and
Meunier
,
M.
,
2006
, “
Thermodynamic Pathways to Melting, Ablation, and Solidification in Absorbing Solids Under Pulsed Laser Irradiation
,”
Phys. Rev. B
,
73
(
13
), p.
134108
. 10.1103/PhysRevB.73.134108
375.
Hu
,
W.
,
Shin
,
Y. C.
, and
King
,
G.
,
2010
, “
Energy Transport Analysis in Ultrashort Pulse Laser Ablation Through Combined Molecular Dynamics and Monte Carlo Simulation
,”
Phys. Rev. B
,
82
(
9
), p.
094111
. 10.1103/PhysRevB.82.094111
376.
Inogamov
,
N. A.
,
Anisimov
,
S. I.
,
Petrov
,
Y. V.
,
Khokhlov
,
V. A.
,
Zhakhovskii
,
V. V.
,
Nishihara
,
K.
,
Agranat
,
M. B.
,
Ashitkov
,
S. I.
, and
Komarov
,
P. S.
,
2008
, “
Theoretical and Experimental Study of Hydrodynamics of Metal Target Irradiated by Ultrashort Laser Pulse
,”
Proc. SPIE
,
7005
, p.
70052F
. 10.1117/12.782598
377.
Balling
,
P.
, and
Schou
,
J.
,
2013
, “
Femtosecond-Laser Ablation Dynamics of Dielectrics: Basics and Applications for Thin Films
,”
Rep. Prog. Phys.
,
76
(
3
), p.
36502
. 10.1088/0034-4885/76/3/036502
378.
Gamaly
,
E. G.
, and
Rode
,
A. V.
,
2013
, “
Physics of Ultra-Short Laser Interaction With Matter: From Phonon Excitation to Ultimate Transformations
,”
Prog. Quantum Electron.
,
37
(
5
), pp.
215
323
. 10.1016/j.pquantelec.2013.05.001
379.
Gamaly
,
E. G.
, and
Rode
,
A. V.
,
2014
, “
Transient Optical Properties of Dielectrics and Semiconductors Excited by an Ultrashort Laser Pulse
,”
J. Opt. Soc. Am. B
,
31
(
11
), p.
C36
. 10.1364/JOSAB.31.000C36
380.
Mouskeftaras
,
A.
,
Guizard
,
S.
,
Fedorov
,
N.
, and
Klimentov
,
S.
,
2013
, “
Mechanisms of Femtosecond Laser Ablation of Dielectrics Revealed by Double Pump-Probe Experiment
,”
Appl. Phys. A Mater. Sci. Process.
,
110
(
3
), pp.
709
715
. 10.1007/s00339-012-7217-7
381.
Mauclair
,
C.
,
Mermillod-Blondin
,
A.
,
Mishchik
,
K.
,
Bonse
,
J.
,
Rosenfeld
,
A.
,
Colombier
,
J. P.
, and
Stoian
,
R.
,
2016
, “
Excitation and Relaxation Dynamics in Ultrafast Laser Irradiated Optical Glasses
,”
High Power Laser Sci. Eng.
,
4
, p.
e46
. 10.1017/hpl.2016.45
382.
Zhang
,
N.
,
Li
,
X.
,
Jiang
,
L.
,
Shi
,
X.
,
Li
,
C.
, and
Lu
,
Y.
,
2013
, “
Femtosecond Double-Pulse Fabrication of Hierarchical Nanostructures Based on Electron Dynamics Control for High Surface-Enhanced Raman Scattering
,”
Opt. Lett.
,
38
(
18
), p.
3558
. 10.1364/OL.38.003558
383.
Garcia-Lechuga
,
M.
,
Siegel
,
J.
,
Hernandez-Rueda
,
J.
, and
Solis
,
J.
,
2014
, “
Imaging the Ultrafast Kerr Effect, Free Carrier Generation, Relaxation and Ablation Dynamics of Lithium Niobate Irradiated With Femtosecond Laser Pulses
,”
J. Appl. Phys.
,
116
(
11
), p.
113502
. 10.1063/1.4895833
384.
Garcia-Lechuga
,
M.
,
Siegel
,
J.
,
Hernandez-Rueda
,
J.
, and
Solis
,
J.
,
2014
, “
Femtosecond Laser Ablation of Dielectric Materials in the Optical Breakdown Regime: Expansion of a Transparent Shell
,”
Appl. Phys. Lett.
,
105
(
11
), p.
112902
. 10.1063/1.4895926
385.
Rapp
,
S.
,
Heinrich
,
G.
,
Domke
,
M.
, and
Huber
,
H. P.
,
2014
, “
The Combination of Direct and Confined Laser Ablation Mechanisms for the Selective Structuring of Thin Silicon Nitride Layers
,”
Phys. Procedia
,
56
(
C
), pp.
998
1006
. 10.1016/j.phpro.2014.08.011
386.
Wædegaard
,
K. J.
,
Sandkamm
,
D. B.
,
Mouskeftaras
,
A.
,
Guizard
,
S.
, and
Balling
,
P.
,
2014
, “
Probing Ultrashort-Pulse Laser Excitation of Sapphire: From the Initial Carrier Creation to Material Ablation
,”
Europhys. Lett.
,
105
(
4
), p.
47001
. 10.1209/0295-5075/105/47001
387.
Acharya
,
S.
,
Chouthe
,
S.
,
Graener
,
H.
,
Böntgen
,
T.
,
Sturm
,
C.
,
Schmidt-Grund
,
R.
,
Grundmann
,
M.
, and
Seifert
,
G.
,
2014
, “
Ultrafast Dynamics of the Dielectric Functions of ZnO and BaTiO3 Thin Films After Intense Femtosecond Laser Excitation
,”
J. Appl. Phys.
,
115
(
5
), p.
53508
. 10.1063/1.4864017
388.
Gulley
,
J. R.
, and
Lanier
,
T. E.
,
2014
, “
Model for Ultrashort Laser Pulse-Induced Ionization Dynamics in Transparent Solids
,”
Phys. Rev. B
,
90
(
15
), p.
155119
. 10.1103/PhysRevB.90.155119
389.
Rethfeld
,
B.
,
Rämer
,
A.
,
Brouwer
,
N.
,
Medvedev
,
N.
, and
Osmani
,
O.
,
2014
, “
Electron Dynamics and Energy Dissipation in Highly Excited Dielectrics
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
327
(
1
), pp.
78
88
. 10.1016/j.nimb.2013.10.087
390.
Gruzdev
,
V.
,
2014
, “
Fundamental Mechanisms of Laser Damage of Dielectric Crystals by Ultrashort Pulse: Ionization Dynamics for the Keldysh Model
,”
Opt. Eng.
,
53
(
12
), p.
122515
. 10.1117/1.OE.53.12.122515
391.
Weiner
,
A.
,
2000
, “
Femtosecond Pulse Shaping Using Spatial Light Modulators
,”
Rev. Sci. Instrum.
,
71
(
5
), pp.
1929
1960
. 10.1063/1.1150614
392.
Weiner
,
A. M.
,
1995
, “
Femtosecond Optical Pulse Shaping and Processing
,”
Prog. Quantum Electron.
,
19
(
3
), pp.
161
237
. 10.1016/0079-6727(94)00013-O
393.
Li
,
M.
,
Menon
,
S.
,
Nibarger
,
J. P.
, and
Gibson
,
G. N.
,
1999
, “
Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics
,”
Phys. Rev. Lett.
,
82
(
11
), pp.
2394
2397
. 10.1103/PhysRevLett.82.2394
394.
Choi
,
T. Y.
,
Hwang
,
D. J.
, and
Grigoropoulos
,
C. P.
,
2002
, “
Femtosecond Laser Induced Ablation of Crystalline Silicon upon Double Beam Irradiation
,”
Appl. Surf. Sci.
,
197
, pp.
720
725
. 10.1016/S0169-4332(02)00400-2
395.
Qi
,
Y.
,
Qi
,
H.
,
Wang
,
Q.
,
Chen
,
Z.
, and
Hu
,
Z.
,
2015
, “
The Influence of Double Pulse Delay and Ambient Pressure on Femtosecond Laser Ablation of Silicon
,”
Opt. Laser Technol.
,
66
, pp.
68
77
. 10.1016/j.optlastec.2014.06.017
396.
Chowdhury
,
I. H.
,
Xu
,
X.
, and
Weiner
,
A. M.
,
2005
, “
Ultrafast Double-Pulse Ablation of Fused Silica
,”
Appl. Phys. Lett.
,
86
(
15
), p.
151110
. 10.1063/1.1901806
397.
Zhang
,
K.
,
Jiang
,
L.
,
Li
,
X.
,
Shi
,
X.
,
Yu
,
D.
,
Qu
,
L.
, and
Lu
,
Y.
,
2014
, “
Femtosecond Laser Pulse-Train Induced Breakdown in Fused Silica: The Role of Seed Electrons
,”
J. Phys. D: Appl. Phys.
,
47
(
43
), p.
435105
. 10.1088/0022-3727/47/43/435105
398.
Chowdhury
,
I. H.
,
Xu
,
X.
, and
Weiner
,
A. M.
,
2003
, “
Ultrafast Pulse Train Micromachining
,”
Proc. SPIE
,
4978
, pp.
138
146
. 10.1117/12.478585
399.
Englert
,
L.
,
Rethfeld
,
B.
,
Haag
,
L.
,
Wollenhaupt
,
M.
,
Sarpe-Tudoran
,
C.
, and
Baumert
,
T.
,
2007
, “
Control of Ionization Processes in High Band Gap Materials via Tailored Femtosecond Pulses
,”
Opt. Express
,
15
(
26
), pp.
17855
17862
. 10.1364/OE.15.017855
400.
Englert
,
L.
,
Wollenhaupt
,
M.
,
Sarpe
,
C.
,
Otto
,
D.
, and
Baumert
,
T.
,
2012
, “
Morphology of Nanoscale Structures on Fused Silica Surfaces From Interaction With Temporally Tailored Femtosecond Pulses
,”
J. Laser Appl.
,
24
(
4
), p.
42002
. 10.2351/1.3697950
401.
Englert
,
L.
,
Wollenhaupt
,
M.
,
Haag
,
L.
,
Sarpe-Tudoran
,
C.
,
Rethfeld
,
B.
, and
Baumert
,
T.
,
2008
, “
Material Processing of Dielectrics With Temporally Asymmetric Shaped Femtosecond Laser Pulses on the Nanometer Scale
,”
Appl. Phys. A
,
92
(
4
), pp.
749
753
. 10.1007/s00339-008-4584-1
402.
Ahn
,
S.
,
Choi
,
J.
,
Noh
,
J.
, and
Cho
,
S. H.
,
2018
, “
High Aspect Ratio Nanoholes in Glass Generated by Femtosecond Laser Pulses With Picosecond Intervals
,”
Opt. Lasers Eng.
,
101
, pp.
85
88
. 10.1016/j.optlaseng.2017.10.002
403.
Rezaei
,
S.
,
Li
,
J.
, and
Herman
,
P. R.
,
2015
, “
Burst Train Generator of High Energy Femtosecond Laser Pulses for Driving Heat Accumulation Effect During Micromachining
,”
Opt. Lett.
,
40
(
9
), pp.
2064
2067
. 10.1364/OL.40.002064
404.
Götte
,
N.
,
Winkler
,
T.
,
Meinl
,
T.
,
Kusserow
,
T.
,
Zielinski
,
B.
,
Sarpe
,
C.
,
Senftleben
,
A.
,
Hillmer
,
H.
, and
Baumert
,
T.
,
2016
, “
Temporal Airy Pulses for Controlled High Aspect Ratio Nanomachining of Dielectrics
,”
Optica
,
3
(
4
), pp.
389
395
. 10.1364/OPTICA.3.000389
405.
Gyamfi
,
M.
,
Costella
,
M.
,
Willemsen
,
T.
,
Jürgens
,
P.
,
Mende
,
M.
,
Jensen
,
L.
, and
Ristau
,
D.
,
2016
, “
Dual Wavelength Laser Damage Mechanisms in the Ultra-Short Pulse Regime
,”
Proceedings of SPIE 10014, Laser-Induced Damage in Optical Materials
,
Boulder, CO
,
Sept. 25–28
, p.
100141B
.
406.
Yu
,
X.
,
Bian
,
Q.
,
Zhao
,
B.
,
Chang
,
Z.
,
Corkum
,
P. B.
, and
Lei
,
S.
,
2013
, “
Near-Infrared Femtosecond Laser Machining Initiated by Ultraviolet Multiphoton Ionization
,”
Appl. Phys. Lett.
,
102
(
10
), p.
101111
. 10.1063/1.4794946
407.
Yu
,
X.
,
Bian
,
Q.
,
Chang
,
Z.
,
Corkum
,
P. B.
, and
Lei
,
S.
,
2013
, “
Femtosecond Laser Nanomachining Initiated by Ultraviolet Multiphoton Ionization
,”
Opt. Express
,
21
(
20
), pp.
24185
24190
. 10.1364/OE.21.024185
408.
Yu
,
X.
,
Chang
,
Z.
,
Corkum
,
P. B.
, and
Lei
,
S.
,
2014
, “
Fabricating Nanostructures on Fused Silica Using Femtosecond Infrared Pulses Combined With Sub-Nanojoule Ultraviolet Pulses
,”
Opt. Lett.
,
39
(
19
), pp.
5638
5640
. 10.1364/OL.39.005638
409.
Dickey
,
F. M.
,
2014
,
Laser Beam Shaping: Theory and Techniques
, 2nd ed.,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
410.
Dickey
,
F. M.
, and
Lizotte
,
T. E.
,
2017
,
Laser Beam Shaping Applications
, 2nd ed.,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
411.
Gerchberg
,
R. W.
, and
Saxton
,
W. O.
,
1972
, “
A Practical Algorithm for the Determination of Phase From Image and Diffraction Plane Pictures
,”
Optik
,
35
(
2
), pp.
237
246
.
412.
Lopez
,
J.
,
Mishchik
,
K.
,
Chassagne
,
B.
,
Javaux-Leger
,
C.
,
Honninger
,
C.
,
Mottay
,
E.
, and
Kling
,
R.
,
2015
, “
Glass Cutting Using Ultrashort Pulsed Bessel Beams
,”
International Congress on Applications of Lasers & Electro-Optics
, pp.
60
69
.
413.
Sanner
,
N.
,
Huot
,
N.
,
Audouard
,
E.
,
Larat
,
C.
,
Huignard
,
J.-P.
, and
Loiseaux
,
B.
,
2005
, “
Programmable Focal Spot Shaping of Amplified Femtosecond Laser Pulses
,”
Opt. Lett.
,
30
(
12
), pp.
1479
1481
. 10.1364/OL.30.001479
414.
Sanner
,
N.
,
Huot
,
N.
,
Audouard
,
E.
,
Larat
,
C.
, and
Huignard
,
J. P.
,
2007
, “
Direct Ultrafast Laser Micro-Structuring of Materials Using Programmable Beam Shaping
,”
Opt. Lasers Eng.
,
45
(
6
), pp.
737
741
. 10.1016/j.optlaseng.2006.10.009
415.
Li
,
J.
,
Kuang
,
Z.
,
Edwardson
,
S.
,
Perrie
,
W.
,
Liu
,
D.
, and
Dearden
,
G.
,
2016
, “
Imaging-Based Amplitude Laser Beam Shaping for Material Processing by 2D Reflectivity Tuning of a Spatial Light Modulator
,”
Appl. Opt.
,
55
(
5
), p.
1095
. 10.1364/AO.55.001095
416.
Turunen
,
J.
, and
Friberg
,
A. T.
,
2010
, “
Chapter 1—Propagation-Invariant Optical Fields
,”
Prog. Opt.
,
54
, pp.
1
88
. 10.1016/S0079-6638(10)05406-5
417.
Duocastella
,
M.
, and
Arnold
,
C. B.
,
2012
, “
Bessel and Annular Beams for Materials Processing
,”
Laser Photon. Rev.
,
6
(
5
), pp.
607
621
. 10.1002/lpor.201100031
418.
Wetzel
,
B.
,
Xie
,
C.
,
Lacourt
,
P.-A.
,
Dudley
,
J. M.
, and
Courvoisier
,
F.
,
2013
, “
Femtosecond Laser Fabrication of Micro and Nano-Disks in Single Layer Graphene Using Vortex Bessel Beams
,”
Appl. Phys. Lett.
,
103
(
24
), p.
241111
. 10.1063/1.4846415
419.
Sahin
,
R.
,
Ersoy
,
T.
, and
Akturk
,
S.
,
2014
, “
Ablation of Metal Thin Films Using Femtosecond Laser Bessel Vortex Beams
,”
Appl. Phys. A
,
118
(
1
), pp.
125
129
. 10.1007/s00339-014-8808-2
420.
Cheng
,
W.
, and
Polynkin
,
P.
,
2014
, “
Micromachining of Borosilicate Glass Surfaces Using Femtosecond Higher-Order Bessel Beams
,”
J. Opt. Soc. Am. B
,
31
(
11
), p.
C48
. 10.1364/JOSAB.31.000C48
421.
Xie
,
C.
,
Jukna
,
V.
,
Milián
,
C.
,
Giust
,
R.
,
Ouadghiri-Idrissi
,
I.
,
Itina
,
T.
,
Dudley
,
J. M.
,
Couairon
,
A.
, and
Courvoisier
,
F.
,
2015
, “
Tubular Filamentation for Laser Material Processing
,”
Sci. Rep.
,
5
(
1
), p.
8914
. 10.1038/srep08914
422.
Vasilyeu
,
R.
,
Dudley
,
A.
,
Khilo
,
N.
, and
Forbes
,
A.
,
2009
, “
Generating Superpositions of Higher-Order Bessel Beams
,”
Opt. Express
,
17
(
26
), pp.
23389
23395
. 10.1364/OE.17.023389
423.
Yu
,
X.
,
Trallero-Herrero
,
C. A.
, and
Lei
,
S.
,
2016
, “
Materials Processing With Superposed Bessel Beams
,”
Appl. Surf. Sci.
,
360
, pp.
833
839
. 10.1016/j.apsusc.2015.11.074
424.
Yang
,
L.
,
Qian
,
D.
,
Xin
,
C.
,
Hu
,
Z.
,
Ji
,
S.
,
Wu
,
D.
,
Hu
,
Y.
,
Li
,
J.
,
Huang
,
W.
, and
Chu
,
J.
,
2017
, “
Two-Photon Polymerization of Microstructures by a Non-Diffraction Multifoci Pattern Generated From a Superposed Bessel Beam
,”
Opt. Lett.
,
42
(
4
), pp.
743
746
. 10.1364/OL.42.000743
425.
Stoian
,
R.
,
Bhuyan
,
M. K.
,
Zhang
,
G.
,
Cheng
,
G.
,
Meyer
,
R.
, and
Courvoisier
,
F.
,
2018
, “
Ultrafast Bessel Beams: Advanced Tools for Laser Materials Processing
,”
Adv. Opt. Technol.
,
7
(
3
), pp.
165
174
. 10.1515/aot-2018-0009
426.
Lenzner
,
M.
,
Krüger
,
J.
,
Sartania
,
S.
,
Cheng
,
Z.
,
Spielmann
,
C.
,
Mourou
,
G.
, and
Kautek
,
F.
,
1998
, “
Femtosecond Optical Breakdown in Dielectrics
,”
Phys. Rev. Lett.
,
80
(
18
), pp.
4076
4079
. 10.1103/PhysRevLett.80.4076
427.
Tien
,
A.-C.
,
Backus
,
S.
,
Kapteyn
,
H.
,
Murnane
,
M.
, and
Mourou
,
G.
,
1999
, “
Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration
,”
Phys. Rev. Lett.
,
82
(
19
), pp.
3883
3886
. 10.1103/PhysRevLett.82.3883
428.
Bonse
,
J.
,
Baudach
,
S.
,
Krüger
,
J.
,
Kautek
,
W.
, and
Lenzner
,
M.
,
2002
, “
Femtosecond Laser Ablation of Silicon-Modification Thresholds and Morphology
,”
Appl. Phys. A Mater. Sci. Process.
,
74
(
1
), pp.
19
25
. 10.1007/s003390100893
429.
Keldysh
,
L.
,
1965
, “
Concerning the Theory of Impact Ionization in Semiconductors
,”
Sov. Phys. JETP
,
21
(
6
), pp.
1135
.
430.
Sanner
,
N.
,
Utéza
,
O.
,
Chimier
,
B.
,
Sentis
,
M.
,
Lassonde
,
P.
,
Légaré
,
F.
, and
Kieffer
,
J. C.
,
2010
, “
Toward Determinism in Surface Damaging of Dielectrics Using Few-Cycle Laser Pulses
,”
Appl. Phys. Lett.
,
96
(
7
), p.
71111
. 10.1063/1.3309700
431.
Du
,
J.
,
Li
,
Z.
,
Kobayashi
,
T.
,
Zhao
,
Y.
, and
Leng
,
Y.
,
2014
,
Pacific-Rim Laser Damage
,
T.
Jitsuno
,
J.
Shao
, and
W.
Rudolph
, eds.,
International Society for Optics and Photonics
,
Bellingham, United States
, p.
923805
.
432.
Soileau
,
M. J.
,
C
Y.
,
2018
, “
Laser-Induced Periodic Structures on Optical Materials
,”
Proceedings of the 2018 SPIE Laser Damage Symposium
,
Sept. 23–26
.
433.
Kafka
,
K. R. P.
,
Talisa
,
N.
,
Tempea
,
G.
,
Austin
,
D. R.
,
Neacsu
,
C.
, and
Chowdhury
,
E. A.
,
2016
, “
Few-Cycle Pulse Laser Induced Damage Threshold Determination of Ultra-Broadband Optics
,”
Opt. Express
,
24
(
25
), pp.
28858
28868
. 10.1364/OE.24.028858
434.
Pasquier
,
C.
,
Blandin
,
P.
,
Clady
,
R.
,
Sanner
,
N.
,
Sentis
,
M.
,
Utéza
,
O.
,
Li
,
Y.
, and
Long
,
S. Y.
,
2015
, “
Handling Beam Propagation in Air for Nearly 10-fs Laser Damage Experiments
,”
Opt. Commun.
,
355
, pp.
230
238
. 10.1016/j.optcom.2015.06.049
435.
Karimi
,
E.
,
Altucci
,
C.
,
Tosa
,
V.
,
Velotta
,
R.
, and
Marrucci
,
L.
,
2013
, “
Influence of Generalized Focusing of Few-Cycle Gaussian Pulses in Attosecond Pulse Generation
,”
Opt. Express
,
21
(
21
), p.
24991
. 10.1364/OE.21.024991