Abstract

White layer (WL) formation in metal cutting is generally found to have negative effects on the corrosion and fatigue life of machined components. Nowadays, the mechanism of the WL formation has not been understood very well, especially about the contribution of the thermal and mechanical loadings generated by the cutting process on WL formation. The relationship between subsurface plastic strain caused by mechanical loadings and the formation of WLs is of our concern. To address this issue, WL formation in hard turning of AISI 52100 under dry and cryogenic cooling conditions is investigated by subsurface plastic strain measurement using the micro-grid technique, observed by scanning electron microscope (SEM). Due to the considerable low temperature, WL is mainly generated by the mechanical effect rather than the thermal one, and this hypothesis is supported by physically based finite element method (FEM) simulations. From the investigations, we discover the existing plastic strain threshold, which governs the occurrence of WL in hard turning of AISI 52100 steel under cryogenic cooling conditions.

References

1.
Guo
,
Y. B.
, and
Schwach
,
D. W.
,
2005
, “
An Experimental Investigation of White Layer on Rolling Contact Fatigue Using Acoustic Emission Technique
,”
Int. J. Fatigue
,
27
(
9
), pp.
1051
1061
. 10.1016/j.ijfatigue.2005.03.002
2.
Stead
,
J.
,
1912
, “
Micro-Metallography and Its Practical Application
,”
J. Western Scottish Iron Steel Inst.
,
19
, pp.
169
204
.
3.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1998
, “
Process Effects on White Layer Formation in Hard Turning
,”
Trans. NAMRI/SME
,
26
, pp.
117
122
.
4.
Umbrello
,
D.
, and
Rotella
,
G.
,
2012
, “
Experimental Analysis of Mechanisms Related to White Layer Formation During Hard Turning of AISI 52100 Bearing Steel
,”
Mater. Sci. Technol.
,
28
(
2
), pp.
205
212
. 10.1179/1743284711Y.0000000020
5.
Ramesh
,
A.
,
Melkote
,
S.
,
Allard
,
L.
,
Riester
,
L.
, and
Watkins
,
T.
,
2005
, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng. A
,
390
(
1–2
), pp.
88
97
. 10.1016/j.msea.2004.08.052
6.
Mondelin
,
A.
,
Valiorgue
,
F.
,
Rech
,
J.
,
Coret
,
M.
, and
Feulvarch
,
E.
,
2013
, “
Modeling of Surface Dynamic Recrystallisation During the Finish Turning of the 15-5PH Steel
,”
Procedia CIRP
,
8
, pp.
311
315
. 10.1016/j.procir.2013.06.108
7.
Mondelin
,
A.
,
Rech
,
J.
,
Feulvarch
,
E.
, and
Coret
,
M.
,
2014
, “
Characterisation of Surface Martensite-Austenite Transformation During Finish Turning of an AISI S15500 Stainless Steel
,”
Int. J. Mach. Mach. Mater.
,
15
(
1/2
), pp.
101
121
. 10.1504/IJMMM.2014.059190
8.
Hosseini
,
S.
,
Klement
,
U.
,
Yao
,
Y.
, and
Ryttberg
,
K.
,
2015
, “
Formation Mechanisms of White Layers Induced by Hard Turning of AISI 52100 Steel
,”
Acta Mater.
,
89
, pp.
258
267
. 10.1016/j.actamat.2015.01.075
9.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
402
414
. 10.1016/j.ijmachtools.2007.09.007
10.
Guo
,
Y. B.
,
Warren
,
A. W.
, and
Hashimoto
,
F.
,
2010
, “
The Basic Relationships Between Residual Stress, White Layer, and Fatigue Life of Hard Turned and Ground Surfaces in Rolling Contact
,”
CIRP J. Manuf. Sci. Technol.
,
2
(
2
), pp.
129
134
. 10.1016/j.cirpj.2009.12.002
11.
Zhang
,
X.-M.
,
Chen
,
L.
, and
Ding
,
H.
,
2016
, “
Effects of Process Parameters on White Layer Formation and Morphology in Hard Turning of AISI52100 Steel
,”
ASME J. Manuf. Sci. Eng. Trans
,
138
(
1
), p.
074502
. 10.1115/1.4032769
12.
Zurecki
,
Z.
,
Ghosh
,
R.
, and
Frey
,
J.-H.
,
2003
, “
Investigation of White Layers Formed in Conventional and Cryogenic Hard Turning of Steels
,”
ASME 2003 International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
Nov. 15–21
, pp.
211
220
.
13.
Umbrello
,
D.
,
Hua
,
J.
, and
Shivpuri
,
R.
,
2004
, “
Hardness-based Flow Stress and Fracture Models for Numerical Simulation of Hard Machining AISI 52100 Bearing Steel
,”
Mater. Sci. Eng. A
,
374
(
1–2
), pp.
90
100
. 10.1016/j.msea.2004.01.012
14.
Umbrello
,
D.
,
Caruso
,
S.
, and
Imbrogno
,
S.
,
2016
, “
Finite Element Modelling of Microstructural Changes in Dry and Cryogenic Machining AISI 52100 Steel
,”
Mater. Sci. Technol.
,
32
(
11
), pp.
1062
1070
. 10.1080/02670836.2015.1104085
15.
Umbrello
,
D.
,
2013
, “
Analysis of the White Layers Formed During Machining of Hardened AISI 52100 Steel Under Dry and Cryogenic Cooling Conditions
,”
Int. J. Adv. Manuf. Technol.
,
64
(
5-8
), pp.
633
642
. 10.1007/s00170-012-4073-8
16.
Nie
,
G.-C.
,
Zhang
,
X.-M.
,
Zhang
,
D.
, and
Ding
,
H.
,
2018
, “
An Experimental Study of the White Layer Formation During Cryogenic Assisted Hard Machining of AISI 52100 Steel
,”
Procedia CIRP
,
77
, pp.
223
226
. 10.1016/j.procir.2018.09.001
17.
Jawahir
,
I. S.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S. T.
,
Pusavec
,
F.
,
Putz
,
M.
,
Rech
,
J.
, and
Schulze
,
V.
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
713
736
. 10.1016/j.cirp.2016.06.007
18.
Outeiro
,
J.
,
Campocasso
,
S.
,
Denguir
,
L.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Poulachon
,
G.
,
2015
, “
Experimental and Numerical Assessment of Subsurface Plastic Deformation Induced by OFHC Copper Machining
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
53
56
. 10.1016/j.cirp.2015.04.080
19.
Zhang
,
D.
,
Zhang
,
X.-M.
,
Leopold
,
J.
, and
Ding
,
H.
,
2017
, “
Subsurface Deformation Generated by Orthogonal Cutting: Analytical Modeling and Experimental Verification
,”
ASME J. Manuf. Sci. Eng.Trans
,
139
(
1
), p.
094502
. 10.1115/1.4036994
You do not currently have access to this content.