Abstract

Geometric dimensioning and tolerancing (GD&T) tolerance standards are widely used in industries across the world. A mathematical model to formulate tolerance specifications to enable comprehensive tolerance analysis is highly desirable but difficult to build. Existing methods have limited success on this with form and profile tolerance modeling as a known challenge. In this paper, we propose a novel tolerance modeling framework and methodology based upon parametric space envelope, a purposely built variation tool constructed from base parametric curve. Under proposal, geometric variation (deviation as well as deformation) is modeled and linked to envelope boundary control points’ movement. This indirect tolerance modeling brings various benefits. It is versatile and can handle full set of tolerances specified under GD&T standards including form, profile, and runout tolerance. The proposal can deal with complex manufacturing part and is capable of providing modeling accuracy required by many applications. The proposed approach has added advantage of facilitating integration of various computer-aided systems to meet emerging industry demands on tolerancing in a new era of digital manufacturing. The proposed methodology is illustrated and verified with an industrial case example on a two-part assembly.

References

1.
DeFeo
,
J. A.
, and
Juran
,
J. M.
,
2016
,
The Complete Guide to Performance Excellence, Juran’s Quality Handbook
,
McGraw-Hill Education
,
New York
.
2.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2018
, “
A Multistage Approach to the Selective Assembly of Components Without Dimensional Distribution Assumptions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071015
. 10.1115/1.4039767
3.
Sadeghi
,
T. R.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
A Novel Rule-Based Method for Individualized Spot Welding Sequence Optimization With Respect to Geometrical Quality
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111013
. 10.1115/1.4044254
4.
Singh
,
A.
, and
Agrawal
,
A.
,
2018
, “
Investigation of Parametric Effects on Geometrical Inaccuracies in Deformation Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
074501
. 10.1115/1.4039586
5.
Bastani
,
K.
,
Barazandeh
,
B.
, and
Kong
,
Z.
,
2018
, “
Fault Diagnosis in Multistation Assembly Systems Using Spatially Correlated Bayesian Learning Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031003
. 10.1115/1.4038184
6.
Tahan
,
A.
, and
Cauvier
,
J.
,
2012
, “
Capability Estimation of Geometrical Tolerance With a Material Modifier by a Hasofer–Lind Index
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021007
. 10.1115/1.4005797
7.
Requicha
,
A. A.
, and
Stephen
,
C. C.
,
1985
, “
Representation of Geometric Features, Tolerances and Attributes in Solid Modellers Based on Constructive Solid Geometry
,”
Production Automation Project, University of Rochester
.
8.
Meadows
,
J. D.
,
2017
,
Geometric Dimensioning and Tolerancing: Applications and Techniques for Use in Design: Manufacturing, and Inspection
,
Routledge
,
Oxfordshire, UK
.
9.
American Society of Mechanical Engineers, 2009, ASME Standard
,
Y14.5-2009—Dimensioning and Tolerancing
,
ASME
,
New York
.
10.
ISO
,
2017
,
1101: 2017 Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-Out
,
International Organization for Standarization
,
Geneva
.
11.
Ngoi
,
B. K. A.
,
1992
, “
Applying Linear Programming to Tolerance Chart Balancing
,”
Int. J. Adv. Manuf. Technol.
,
7
(
4
), pp.
187
192
. 10.1007/BF02601622
12.
Shen
,
Z.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2003
, “
Automation of Linear Tolerance Charts and Extension to Statistical Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
95
99
. 10.1115/1.1573236
13.
Sacks
,
E.
, and
Joskowicz
,
L.
,
1998
, “
Parametric Kinematic Tolerance Analysis of General Planar Systems
,”
Computer-Aided Design.
,
30
(
9
), pp.
707
714
. 10.1016/S0010-4485(98)00024-4
14.
Desrochers
,
A.
, and
Clément
,
A.
,
1994
, “
A Dimensioning and Tolerancing Assistance Model for CAD/CAM Systems
,”
Int. J. Adv. Manuf. Technol.
,
9
(
6
), pp.
352
361
. 10.1007/BF01748479
15.
Giordano
,
M.
,
Samper
,
S.
, and
Petit
,
J. P.
,
2007
, “Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases,”
Models for Computer Aided Tolerancing in Design and Manufacturing
,
J. K.
Davidson
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
85
94
.
16.
Davidson
,
J. K.
,
Mujezinovic
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
609
622
. 10.1115/1.1497362
17.
Desrochers
,
A.
,
Ghie
,
W.
, and
Laperriere
,
L.
,
2003
, “
Application of a Unified Jacobian–Torsor Model for Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
2
14
. 10.1115/1.1573235
18.
Liu
,
Y.
, and
Xu
,
X.
,
2017
, “
Industry 4.0 and Cloud Manufacturing: A Comparative Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
034701
. 10.1115/1.4034667
19.
Chong
,
L.
,
Ramakrishna
,
S.
, and
Singh
,
S.
,
2018
, “
A Review of Digital Manufacturing-Based Hybrid Additive Manufacturing Processes
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2281
2300
. 10.1007/s00170-017-1345-3
20.
Ustundag
,
A.
, and
Cevikcan
,
E.
,
2018
, “Industry 4.0: Managing The Digital Transformation,”
Technology Roadmap for Industry
, P. A. Sarvari, A. Ustundag, E. Cevikcan, I. Kaya, and S. Cebi, eds.,
Springer
,
Cham
, pp.
85
94
.
21.
Boschert
,
S.
, and
Rosen
,
R.
, eds.,
2016
, “Digital Twin—The Simulation Aspect,”
Mechatronic Futures
,
Springer
,
Cham
, pp.
59
74
.
22.
Requicha
,
A. A.
,
1983
, “
Toward a Theory of Geometric Tolerancing
,”
Int. J. Robot. Res.
,
2
(
4
), pp.
45
60
. 10.1177/027836498300200403
23.
Adragna
,
P. A.
,
Samper
,
S.
, and
Pillet
,
M.
,
2009
, “
A Proposition of 3D Inertial Tolerancing to Consider the Statistical Combination of the Location and Orientation Deviations
,”
Int. J. Prod. Dev.
,
10
(
1–3
), pp.
26
45
. 10.1504/ijpd.2010.029985
24.
Clément
,
A.
,
1991
, “
Theory and Practice of 3-D Tolerancing for Assembly
,”
Proceedings of CIRP International Working Seminar on Computer-Aided Tolerancing
,
Pennsylvania State University, PA
,
May 16–17
, Vol.
25
, pp.
25
57
.
25.
Laperriere
,
L.
,
Ghie
,
W.
, and
Desrochers
,
A.
,
2002
, “
Statistical and Deterministic Tolerance Analysis and Synthesis Using a Unified Jacobian–Torsor Model
,”
CIRP Ann.—Manuf. Technol.
,
51
(
1
), pp.
417
420
. 10.1016/S0007-8506(07)61550-9
26.
Ghie
,
W.
,
2009
, “
Statistical Analysis Tolerance Using Jacobian Torsor Model Based on Uncertainty Propagation Method
,”
Int. J. Multiphys.
,
3
(
1
), pp.
11
30
. 10.1260/175095409787924472
27.
Ghie
,
W.
,
Laperriere
,
L.
, and
Desrochers
,
A.
,
2010
, “
Statistical Tolerance Analysis Using the Unified Jacobian–Torsor Model
,”
Int. J. Prod. Res.
,
48
(
15
), pp.
4609
4630
. 10.1080/00207540902824982
28.
Chen
,
H.
,
Jin
,
S.
,
Li
,
Z.
, and
Lai
,
X.
,
2015
, “
A Modified Method of the Unified Jacobian-Torsor Model for Tolerance Analysis and Allocation
,”
Int. J. Precis. Eng. Manuf.
,
16
(
8
), pp.
1789
1800
. 10.1007/s12541-015-0234-7
29.
Zeng
,
W.
,
Rao
,
Y.
,
Wang
,
P.
, and
Yi
,
W.
,
2017
, “
A Solution of Worst-Case Tolerance Analysis for Partial Parallel Chains Based on the Unified Jacobian-Torsor Model
,”
Precis. Eng.
,
47
, pp.
276
291
. 10.1016/j.precisioneng.2016.09.002
30.
Jin
,
S.
,
Ding
,
S.
,
Li
,
Z.
,
Yang
,
F.
, and
Ma
,
X.
,
2018
, “
Point-Based Solution Using Jacobian-Torsor Theory Into Partial Parallel Chains for Revolving Components Assembly
,”
J. Manuf. Syst.
,
46
, pp.
46
58
. 10.1016/j.jmsy.2017.11.003
31.
Ameta
,
G.
,
Serge
,
S.
, and
Giordano
,
M.
,
2011
, “
Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021004
. 10.1115/1.3593413
32.
Ameta
,
G.
,
Singh
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2018
, “
Tolerance-Maps to Model Composite Positional Tolerancing for Patterns of Features
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031003
. 10.1115/1.4039473
33.
Tiwary
,
H. R.
,
2007
, “
On the Hardness of Minkowski Addition and Related Operations
,”
Proceedings of the 23rd Annual Symposium on Computational Geometry
,
New York, NY
,
June 6
, pp.
306
309
.
34.
Clemént
,
A.
,
Riviere
,
A.
,
Serré
,
P.
, and
Valade
,
C.
,
1998
, “The TTRSs: 13 Constraints for Dimensioning and Tolerancing,”
Geometric Design Tolerancing: Theories, Standards and Applications
,
H. A.
ElMaraghy
, ed.,
Chapman and Hall
,
London
, pp.
122
131
.
35.
Liu
,
J.
, and
Wilhelm
,
R. G.
,
2003
, “Genetic Algorithms for TTRS Tolerance Analysis,”
Proceedings of the 7th CIRP International Seminar on Computer Aided Tolerancing
,
Paris, France
, pp.
55
64
.
36.
Desrochers
,
A.
,
2003
, “
A CAD/CAM Representation Model Applied to Tolerance Transfer Methods
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
14
22
. 10.1115/1.1543974
37.
Cao
,
Y.
,
Zhao
,
Q.
,
Liu
,
T.
,
Ren
,
L.
, and
Yang
,
J.
,
2018
, “
The Strategy of Datum Reference Frame Selection Based on Statistical Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021002
. 10.1115/1.4039380
38.
Hong
,
Y. S.
, and
Chang
,
T. C.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
. 10.1080/00207540210128242
39.
Chen
,
H.
,
Jin
,
S.
,
Li
,
Z.
, and
Lai
,
X.
,
2014
, “
A Comprehensive Study of Three Dimensional Tolerance Analysis Methods
,”
Comput.-Aided Des.
,
53
, pp.
1
13
. 10.1016/j.cad.2014.02.014
40.
Cao
,
Y.
,
Liu
,
T.
, and
Yang
,
J.
,
2018
, “
A Comprehensive Review of Tolerance Analysis Models
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
3055
3085
. 10.1007/s00170-018-1920-2
41.
Marziale
,
M.
, and
Polini
,
W.
,
2011
, “
A Review of Two Models for Tolerance Analysis of an Assembly: Jacobian and Torsor
,”
Int. J. Comput. Integr. Manuf.
,
24
(
1
), pp.
74
86
. 10.1080/0951192X.2010.531286
42.
Mansuy
,
M.
,
Giordano
,
M.
, and
Davidson
,
J. K.
,
2013
, “
Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101008
. 10.1115/1.4024980
43.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.
,
66
(
1
), pp.
137
140
. 10.1016/j.cirp.2017.04.038
44.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
. 10.1007/s00170-017-0233-1
45.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
ACM SIGGRAPH Comput. Graph.
,
20
(
4
), pp.
151
160
. 10.1145/15886.15903
46.
Murray
,
R. M.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
47.
Luo
,
C.
,
Franciosa
,
P.
,
Ceglarek
,
D.
,
Ni
,
Z.
, and
Jia
,
F.
,
2018
, “
A Novel Geometric Tolerance Modeling Inspired by Parametric Space Envelope
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1386
1398
. 10.1109/TASE.2018.2793920
48.
Farin
,
G. E.
, and
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: a Practical Guide
,
Morgan Kaufmann
,
San Francisco, CA
.
49.
Sarcar
,
M. M. M.
,
Rao
,
K. M.
, and
Narayan
,
K. L.
,
2008
,
Computer Aided Design and Manufacturing
,
PHI Learning Pvt. Ltd
,
New Delhi, India
.
50.
Shiu
,
B. W.
,
Apley
,
D. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2003
, “
Tolerance Allocation for Compliant Beam Structure Assemblies
,”
IIE Trans.
,
35
(
4
), pp.
329
342
. 10.1080/07408170304376
51.
Loose
,
J. P.
,
Zhou
,
Q.
,
Zhou
,
S.
, and
Ceglarek
,
D.
,
2010
, “
Integrating GD&T Into Dimensional Variation Models for Multistage Machining Processes
,”
Int. J. Prod. Res.
,
48
(
11
), pp.
3129
3149
. 10.1080/00207540802691366
52.
Yu
,
H.
,
Zhao
,
C.
, and
Lai
,
X.
,
2018
, “
Compliant Assembly Variation Analysis of Scalloped Segment Plates With a New Irregular Quadrilateral Plate Element Via ANCF
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091006
. 10.1115/1.4040323
53.
Huang
,
W.
,
Liu
,
J.
,
Chalivendra
,
V.
,
Ceglarek
,
D.
,
Kong
,
Z.
, and
Zhou
,
Y.
,
2014
, “
Statistical Modal Analysis for Variation Characterization and Application in Manufacturing Quality Control
,”
IIE Trans.
,
46
(
5
), pp.
497
511
. 10.1080/0740817X.2013.814928
54.
Djurdjanovic
,
D.
,
Mears
,
L.
,
Niaki
,
F.
,
Haq
,
A.
, and
Li
,
L.
,
2018
, “
State of the Art Review on Process, System, and Operations Control in Modern Manufacturing
,”
ASME. J. Manuf. Sci. Eng.
,
140
(
6
), pp.
061010
. 10.1115/1.4038074
55.
Huang
,
W.
,
Ceglarek
,
D.
, and
Zhou
,
Z.
,
2004
, “
Tolerance Analysis for Design of Multistage Manufacturing Processes Using Number-Theoretical net Method (NT-net)
,”
Int. J. Flex. Manuf. Syst.
,
16
(
1
), pp.
65
90
. 10.1023/B:FLEX.0000039173.07009.8a
56.
Huang
,
W.
,
Phoomboplab
,
T.
, and
Ceglarek
,
D.
,
2009
, “
Process Capability Surrogate Model-Based Tolerance Synthesis for Multi-Station Manufacturing Systems
,”
IIE Trans.
,
41
(
4
), pp.
309
322
. 10.1080/07408170802510408
You do not currently have access to this content.