Abstract

The conventional manufacturing processes for aerogel insulation materials mostly rely on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment, and prolonged processing time. Considering the large market demand for the aerogel insulation material in the next decade, a cost-effective and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared with the supercritical drying and freeze-drying techniques, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous aerogel structure, it is found to be beneficial for the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product, without sacrificing the thermal insulation performance. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printing of complex three-dimensional geometries. The thermal insulation performance of the printed objects is characterized, and the mechanical properties were also examined. The proposed approach is found to have a 56% reduction in the processing time. The printed silica aerogels exhibit a low thermal conductivity of 0.053 W m−1 K−1.

References

1.
Acharya
,
A.
,
Joshi
,
D.
, and
Gokhale
,
V. A.
,
2013
, “
AEROGEL—A Promising Building Material for Sustainable Buildings
,”
Chemical Process Eng. Res.
,
9
, pp.
1
6
.
2.
Riffat
,
S. B.
, and
Qiu
,
G.
,
2012
, “
A Review of State-of-the-Art Aerogel Applications in Buildings
,”
Int. J. Low-Carbon Technologies
,
8
(
1
), pp.
1
6
. 10.1093/ijlct/cts001
3.
Fesmire
,
J. E.
,
2006
, “
Aerogel Insulation Systems for Space Launch Applications
,”
Cryogenics
,
46
(
2–3
), pp.
111
117
. 10.1016/j.cryogenics.2005.11.007
4.
Yang
,
J.
,
Zhang
,
E.
,
Li
,
X.
,
Zhang
,
Y.
,
Qu
,
J.
, and
Yu
,
Z.-Z.
,
2016
, “
Cellulose/Graphene Aerogel Supported Phase Change Composites with High Thermal Conductivity and Good Shape Stability for Thermal Energy Storage
,”
Carbon
,
98
, pp.
50
57
. 10.1016/j.carbon.2015.10.082
5.
Dorcheh
,
A. S.
, and
Abbasi
,
M.
,
2008
, “
Silica Aerogel; Synthesis, Properties and Characterization
,”
J. Mater. Process. Technol.
,
199
(
1–3
), pp.
10
26
. 10.1016/j.jmatprotec.2007.10.060
6.
Leventis
,
N.
, and
Leventis
,
C.
,
2010
,
Methods and Compositions for Preparing Silica Aerogels
,
Google Patents
.
7.
Industrial, A. A.
High Temperature Insulation—Pyrogel XTE. 2019
; Available from: https://www.aerogel.com/products-and-solutions/pyrogel-xte/default.aspx.
8.
CabotCorporation
.
Aerogel Products. 2019
; Available from: http://www.cabotcorp.com/solutions/products-plus/aerogel.
9.
Aerogel.org
.
Strong and Flexible Aerogels
.
2018
; Available from: http://www.aerogel.org/?p=1058.
10.
Van Bommel
,
M.
, and
De Haan
,
A.
,
1995
, “
Drying of Silica Aerogel With Supercritical Carbon Dioxide
,”
J. Non-Cryst. Solids
,
186
, pp.
78
82
. 10.1016/0022-3093(95)00072-0
11.
Guo
,
X.
,
Shan
,
J.
,
Lei
,
W.
,
Ding
,
R.
,
Zhang
,
Y.
, and
Yang
,
H.
,
2019
, “
Facile Synthesis of Methylsilsesquioxane Aerogels with Uniform Mesopores by Microwave Drying
,”
Polymers
,
11
(
2
), p.
375
. 10.3390/polym11020375
12.
Hu
,
W.
,
Li
,
M.
,
Chen
,
W.
,
Zhang
,
N.
,
Li
,
B.
,
Wang
,
M.
, and
Zhao
,
Z.
,
2016
, “
Preparation of Hydrophobic Silica Aerogel with Kaolin Dried at Ambient Pressure
,”
Colloids Surf., A
,
501
, pp.
83
91
. 10.1016/j.colsurfa.2016.04.059
13.
Yang
,
F.
,
Zhao
,
G.
,
Zhou
,
C.
, and
Lin
,
D.
,
2018
, “
Phase Change Materials (PCM) Based Cold Source for Selective Freezing 3D Printing of Porous Materials
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2145
2155
. 10.1007/s00170-017-1295-9
14.
Zhao
,
G.
,
Lin
,
D.
,
Zhou
,
C.
,
2017
, “
Thermal Analysis of Directional Freezing Based Graphene Aerogel Three-Dimensional Printing Process
,”
ASME J. Micro Nano-Manuf.
,
5
(
1
), p.
011006
. 10.1115/1.4035392
15.
Zhao
,
G.
,
Zhou
,
C.
,
Lin
,
D.
,
2018
, “
Tool Path Planning for Directional Freezing-Based Three-Dimensional Printing of Nanomaterials
,”
ASME J. Micro Nano-Manuf.
,
6
(
1
), p.
010905
. 10.1115/1.4038452
16.
Zhang
,
F.
,
Yang
,
F.
,
Lin
,
D.
,
Zhou
,
C.
,
2017
, “
Parameter Study of Three-Dimensional Printing Graphene Oxide Based on Directional Freezing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031016
. 10.1115/1.4034669
17.
Yan
,
P.
,
Brown
,
E.
,
Su
,
Q.
,
Li
,
J.
,
Wang
,
J.
,
Xu
,
C.
,
Zhou
,
C.
, and
Lin
,
D.
,
2017
, “
3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation Through Tunable Poisson's Ratio
,”
Small
,
13
(
38
), p.
1701756
. 10.1002/smll.201701756
18.
Zhang
,
Q.
,
Zhang
,
F.
,
Medarametla
,
S. P.
,
Li
,
H.
,
Zhou
,
C.
, and
Lin
,
D.
,
2016
, “
3D Printing of Graphene Aerogels
,”
Small
,
12
(
13
), pp.
1702
1708
. 10.1002/smll.201503524
19.
Maleki
,
H.
,
Montes
,
S.
,
Hayati-Roodbari
,
N.
,
Putz
,
F.
, and
Huesing
,
N.
,
2018
, “
Compressible, Thermally Insulating, and Fire Retardant Aerogels Through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure—An Approach Towards 3D Printing of Aerogels
,”
ACS Appl. Mater. Interfaces
,
10
(
26
), pp.
22718
22730
. 10.1021/acsami.8b05856
20.
Muth
,
J. T.
,
Dixon
,
P. G.
,
Woish
,
L.
,
Gibson
,
L. J.
, and
Lewis
,
J. A.
,
2017
, “
Architected Cellular Ceramics with Tailored Stiffness via Direct Foam Writing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
8
), pp.
1832
1837
. 10.1073/pnas.1616769114
21.
Kartashynska
,
E.
,
Lylyk
,
S.
,
Aksenenko
,
E.
,
Makievski
,
A.
,
Vysotsky
,
Y. B.
,
Fainerman
,
V.
, and
Miller
,
R.
,
2020
, “
Surface Tension at the Interface Between Aqueous Solution of Surfactant and Alkane. A Comprehensive Quantum Chemical and Thermodynamic Approach
,”
Colloids Surf., A
,
591
, p.
124557
. 10.1016/j.colsurfa.2020.124557
22.
Zhang
,
S.
,
Lan
,
Q.
,
Liu
,
Q.
,
Xu
,
J.
, and
Sun
,
D.
,
2008
, “
Aqueous Foams Stabilized by Laponite and CTAB
,”
Colloids Surf., A
,
317
(
1–3
), pp.
406
413
. 10.1016/j.colsurfa.2007.11.010
23.
Gao
,
G.
,
Xiang
,
Y.
,
Lu
,
S.
,
Dong
,
B.
,
Chen
,
S.
,
Shi
,
L.
,
Wang
,
Y.
,
Wu
,
H.
,
Li
,
Z.
, and
Abdelkader
,
A.
,
2018
, “
CTAB-assisted Growth of Self-Supported Zn 2 GeO 4 Nanosheet Network on a Conductive Foam as a Binder-Free Electrode for Long-Life Lithium-ion Batteries
,”
Nanoscale
,
10
(
3
), pp.
921
929
. 10.1039/C7NR05407F
24.
Yekeen
,
N.
,
Manan
,
M. A.
,
Idris
,
A. K.
, and
Samin
,
A. M.
,
2017
, “
Influence of Surfactant and Electrolyte Concentrations on Surfactant Adsorption and Foaming Characteristics
,”
J. Pet. Sci. Eng.
,
149
, pp.
612
622
. 10.1016/j.petrol.2016.11.018
25.
Yang
,
R.
,
Hu
,
F.
,
An
,
L.
,
Armstrong
,
J. N.
,
Hu
,
Y.
,
Li
,
C.
,
Huang
,
Y.
, and
Ren
,
S.
,
2019
, “
A Hierarchical Mesoporous Insulation Ceramic
,”
Nano Lett.
,
20
(
2
), pp.
1110
1116
. 10.1021/acs.nanolett.9b04411
26.
An
,
L.
,
Wang
,
J.
,
Petit
,
D.
,
Armstrong
,
J. N.
,
Hanson
,
K.
,
Hamilton
,
J.
,
Souza
,
M.
,
Zhao
,
D.
,
Li
,
C.
, and
Liu
,
Y.
,
2020
, “
An all-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material
,”
Nano Lett.
,
20
(
5
). 10.1021/acs.nanolett.0c00917
27.
Yang
,
R.
,
Wang
,
J.
,
An
,
L.
,
Petit
,
D.
,
Armstrong
,
J. N.
,
Liu
,
Y.
,
Huang
,
Y.
,
Hu
,
Y.
,
Shao
,
Z.
, and
Ren
,
S.
,
2020
, “
A Macromolecular Assembly Directed Ceramic Aerogel Monolith Material
,”
J. Mater. Chem. C
,
8
(
30
), pp.
10319
10324
. 10.1039/D0TC02481C
28.
M’barki
,
A.
,
Bocquet
,
L.
, and
Stevenson
,
A.
,
2017
, “
Linking Rheology and Printability for Dense and Strong Ceramics by Direct ink Writing
,”
Sci. Rep.
,
7
(
1
), p.
6017
. 10.1038/s41598-017-06115-0
29.
Song
,
X.
,
Tetik
,
H.
,
Jirakittsonthon
,
T.
,
Parandoush
,
P.
,
Yang
,
G.
,
Lee
,
D.
,
Ryu
,
S.
,
Lei
,
S.
,
Weiss
,
M. L.
, and
Lin
,
D.
,
2019
, “
Biomimetic 3D Printing of Hierarchical and Interconnected Porous Hydroxyapatite Structures With High Mechanical Strength for Bone Cell Culture
,”
Adv. Eng. Mater.
,
21
(
1
), p.
1800678
. 10.1002/adem.201800678
30.
Liu
,
J.
,
Li
,
Y.
,
Li
,
Y.
,
Sang
,
S.
, and
Li
,
S.
,
2016
, “
Effects of Pore Structure on Thermal Conductivity and Strength of Alumina Porous Ceramics Using Carbon Black as Pore-Forming Agent
,”
Ceram. Int.
,
42
(
7
), pp.
8221
8228
. 10.1016/j.ceramint.2016.02.032
31.
Nan
,
B.
,
Olhero
,
S.
,
Pinho
,
R.
,
Vilarinho
,
P. M.
,
Button
,
T. W.
, and
Ferreira
,
J. M.
,
2019
, “
Direct ink Writing of Macroporous Lead-Free Piezoelectric Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3
,”
J. Am. Ceram. Soc.
,
102
(
6
), pp.
3191
3203
. 10.1111/jace.16220
32.
Zhou
,
N.
,
Liu
,
C.
,
Lewis
,
J. A.
, and
Ham
,
D.
,
2017
, “
Gigahertz Electromagnetic Structures Via Direct Ink Writing for Radio-Frequency Oscillator and Transmitter Applications
,”
Adv. Mater.
,
29
(
15
), p.
1605198
. 10.1002/adma.201605198
33.
Sheng
,
Y.
,
Jiang
,
N.
,
Lu
,
S.
,
Zhao
,
Y.
,
Wang
,
Q.
,
Ma
,
L.
, and
Liu
,
X.
,
2019
, “
Molecular Interaction and Foaming Property of the Mixtures of Hydrocarbon, Fluorocarbon and Silicone Surfactants
,”
J. Mol. Liq.
,
296
, p.
111836
. 10.1016/j.molliq.2019.111836
34.
Liu
,
Q.
,
Liu
,
S.
,
Luo
,
D.
, and
Peng
,
B.
,
2019
, “
Ultra-Low Interfacial Tension Foam System for Enhanced Oil Recovery
,”
Appl. Sci.
,
9
(
10
), p.
2155
. 10.3390/app9102155
35.
Sengupta
,
R.
,
Khair
,
A. S.
, and
Walker
,
L. M.
,
2020
, “
Dynamic Interfacial Tension Measurement Under Electric Fields Allows Detection of Charge Carriers in Nonpolar Liquids
,”
J. Colloid Interface Sci.
,
567
, pp.
18
27
. 10.1016/j.jcis.2020.01.081
You do not currently have access to this content.