Abstract

Main problems related to the adoption of magnesium alloys for temporary orthopedic prostheses manufacturing are (i) the need of an efficient production process and (ii) the high corrosion rate compared with the bone healing time. In this work, the single-point incremental forming (SPIF) process, an effective and flexible solution for manufacturing very small batches even composed by one piece, was investigated. Tests were conducted on AZ31B-H24 sheets and were aimed at understanding the effect of temperature on the mechanical characteristics (microstructure, hardness, and roughness) of the sheet after the above-mentioned forming process and their correlation with both the corrosion rate and the cytocompatibility. In addition, after the forming process, samples processed by SPIF were coated by electrospun polycaprolactone (PCL) to reduce the corrosion rate and to further improve the cytocompatibility. Grain refinement was achieved thanks to the combined effect of temperature and strain rate during forming and finer grain size resulted to improve the magnesium corrosion resistance. In simulated body fluids, the electrospun PCL-coated samples exhibited a slower pH increase compared with uncoated samples. No indirect cytotoxic effects were detected in vitro for MC3T3-E1 cells for both coated and uncoated samples. However, cells colonization was observed only on electrospun PCL-coated samples, suggesting the importance of the polymeric coating in promoting the adhesion and survival of seeded MC3T3-E1 cells on the implant surface.

References

1.
Waizy
,
H.
,
Seitz
,
J. M.
,
Reifenrath
,
J.
,
Weizbauer
,
A.
,
Bach
,
F. W.
,
Meyer-Lindenberg
,
A.
,
Denkena
,
B.
, and
Windhagen
,
H.
,
2013
, “
Biodegradable Magnesium Implants for Orthopedic Applications
,”
J. Mater. Sci.
,
48
(
1
), pp.
39
50
. 10.1007/s10853-012-6572-2
2.
Ali
,
M.
,
Hussein
,
M. A.
, and
Al-Aqeeli
,
N.
,
2019
, “
Magnesium-Based Composites and Alloys for Medical Applications: A Review of Mechanical and Corrosion Properties
,”
J. Alloys Compd.
,
792
, pp.
1162
1190
. 10.1016/j.jallcom.2019.04.080
3.
Hornberger
,
H.
,
Virtanen
,
S.
, and
Boccaccini
,
A. R.
,
2012
, “
Biomedical Coatings on Magnesium Alloys—A Review
,”
Acta Biomater.
,
8
(
7
), pp.
2442
2455
. 10.1016/j.actbio.2012.04.012
4.
Gupta
,
M.
, and
Sharon
,
N. M. L.
,
2011
,
Magnesium, Magnesium Alloys, and Magnesium Composites
,
Wiley
,
Hoboken, NJ
.
5.
Chen
,
Q.
, and
Thouas
,
G. A.
,
2015
, “
Metallic Implant Biomaterials
,”
Mater. Sci. Eng. R: Rep.
,
87
, pp.
1
57
. 10.1016/j.mser.2014.10.001
6.
Radha
,
R.
, and
Sreekanth
,
D.
,
2017
, “
Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications—A Review
,”
J. Magnes. Alloys
,
5
(
3
), pp.
286
312
. 10.1016/j.jma.2017.08.003
7.
Chen
,
J.
,
Tan
,
L.
, and
Yang
,
K.
,
2017
, “
Effect of Heat Treatment on Mechanical and Biodegradable Properties of an Extruded ZK60 Alloy
,”
Bioact. Mater.
,
2
(
1
), pp.
19
26
. 10.1016/j.bioactmat.2016.12.002
8.
Hou
,
X.
,
Qin
,
H.
,
Gao
,
H.
,
Mankoci
,
S.
,
Zhang
,
R.
,
Zhou
,
X.
,
Ren
,
Z.
,
Doll
,
G. L.
,
Martini
,
A.
,
Sahai
,
N.
,
Dong
,
Y.
, and
Ye
,
C.
,
2017
, “
A Systematic Study of Mechanical Properties, Corrosion Behavior and Biocompatibility of AZ31BMg Alloy After Ultrasonic Nanocrystal Surface Modification
,”
Mater. Sci. Eng. C
,
78
, pp.
1061
1071
. 10.1016/j.msec.2017.04.128
9.
Tian
,
Q.
,
Lin
,
J.
,
Rivera-Castaneda
,
L.
,
Tsanhani
,
A.
,
Dunn
,
Z. S.
,
Rodriguez
,
A.
,
Aslani
,
A.
, and
Liu
,
H.
,
2019
, “
Nano-to-Submicron Hydroxyapatite Coatings for Magnesium-Based Bioresorbable Implants—Deposition, Characterization, Degradation, Mechanical Properties, and Cytocompatibility
,”
Sci. Rep.
,
9
(
1
), pp.
1
27
. 10.1038/s41598-018-37123-3
10.
Wang
,
J.
,
Cui
,
L.
,
Ren
,
Y.
,
Zou
,
Y.
,
Ma
,
J.
,
Wang
,
C.
,
Zheng
,
Z.
,
Chen
,
X.
,
Zeng
,
R.
, and
Zheng
,
Y.
,
2020
, “
In Vitro and in Vivo Biodegradation and Biocompatibility of an MMT/BSA Composite Coating Upon Magnesium Alloy AZ31
,”
J. Mater. Sci. Technol.
,
47
, pp.
52
67
. 10.1016/j.jmst.2020.02.006
11.
Jiang
,
S.
,
Cai
,
S.
,
Zhang
,
F.
,
Xu
,
P.
,
Ling
,
R.
,
Li
,
Y.
,
Jiang
,
Y.
, and
Xu
,
G.
,
2018
, “
Synthesis and Characterization of Magnesium Phytic Acid/Apatite Composite Coating on AZ31 Mg Alloy by Microwave Assisted Treatment
,”
Mater. Sci. Eng. C
,
91
, pp.
218
227
. 10.1016/j.msec.2018.05.041
12.
Wu
,
L.
,
Ding
,
X.
,
Zheng
,
Z.
,
Tang
,
A.
,
Zhang
,
G.
,
Atrens
,
A.
, and
Fusheng
,
P.
,
in press
, “
Doublely-Doped Mg-Al-Ce-V2O74− LDH Composite Film on Magnesium Alloy AZ31 for Anticorrosion
,”
J. Mater. Sci. Technol.
, Available online 16 November 2019.
13.
Li
,
L. Y.
,
Cui
,
L. Y.
,
Zeng
,
R. C.
,
Li
,
S. Q.
,
Chen
,
X. B.
,
Zheng
,
Y.
, and
Kannan
,
M. B.
,
2018
, “
Advances in Functionalized Polymer Coatings on Biodegradable Magnesium Alloys—A Review
,”
Acta Biomater.
,
79
, pp.
23
36
. 10.1016/j.actbio.2018.08.030
14.
Xu
,
L.
,
Pan
,
F.
,
Yu
,
G.
,
Yang
,
L.
,
Zhang
,
E.
, and
Yang
,
K.
,
2009
, “
In Vitro and in Vivo Evaluation of the Surface Bioactivity of a Calcium Phosphate Coated Magnesium Alloy
,”
Biomaterials
,
30
(
8
), pp.
1512
1523
. 10.1016/j.biomaterials.2008.12.001
15.
Yang
,
J.
,
Cui
,
F.
,
Lee
,
I.-S.
,
Zhang
,
Y.
,
Yin
,
Q.
,
Xia
,
H.
, and
Yang
,
S. X.
,
2012
, “
In Vivo Biocompatibility and Degradation Behavior of Mg Alloy Coated by Calcium Phosphate in a Rabbit Model
,”
J. Biomater. Appl.
,
27
(
2
), pp.
153
164
. 10.1177/0885328211398161
16.
Fan
,
X.
,
Li
,
C.
,
Wang
,
Y.
,
Huo
,
Y.
,
Li
,
S.
, and
Zeng
,
R.
,
2020
, “
Corrosion Resistance of an Amino Acid-Bioinspired Calcium Phosphate Coating on Magnesium Alloy AZ31
,”
J. Mater. Sci. Technol.
,
49
, pp.
224
235
. 10.1016/j.jmst.2020.01.046
17.
Wong
,
H. M.
,
Yeung
,
K. W. K.
,
Lam
,
K. O.
,
Tam
,
V.
,
Chu
,
P. K.
,
Luk
,
K. D. K.
, and
Cheung
,
K. M. C.
,
2010
, “
A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants
,”
Biomaterials
,
31
(
8
), pp.
2084
2096
. 10.1016/j.biomaterials.2009.11.111
18.
Zomorodian
,
A.
,
Garcia
,
M. P.
,
Moura e Silva
,
T.
,
Fernandes
,
J. C. S.
,
Fernandes
,
M. H.
, and
Montemor
,
M. F.
,
2013
, “
Corrosion Resistance of a Composite Polymeric Coating Applied on Biodegradable AZ31 Magnesium Alloy
,”
Acta Biomater.
,
9
(
10
), pp.
8660
8670
. 10.1016/j.actbio.2013.02.036
19.
Zhang
,
Z. Q.
,
Zeng
,
R. C.
,
Lin
,
C. G.
,
Wang
,
L.
,
Chen
,
X. B.
, and
Chen
,
D. C.
,
2020
, “
Corrosion Resistance of Self-Cleaning Silane/Polypropylene Composite Coatings on Magnesium Alloy AZ31
,”
J. Mater. Sci. Technol.
,
41
, pp.
43
55
. 10.1016/j.jmst.2019.08.056
20.
Hanas
,
T.
,
Sampath Kumar
,
T. S.
,
Perumal
,
G.
, and
Doble
,
M.
,
2016
, “
Tailoring Degradation of AZ31 Alloy by Surface Pre-Treatment and Electrospun PCL Fibrous Coating
,”
Mater. Sci. Eng. C
,
65
, pp.
43
50
. 10.1016/j.msec.2016.04.017
21.
Rivero
,
P. J.
,
Redin
,
D. M.
, and
Rodríguez
,
R. J.
,
2020
, “
Electrospinning: A Powerful Tool to Improve the Corrosion Resistance of Metallic Surfaces Using Nanofibrous Coatings
,”
Metals
,
10
(
3
), p.
350
. 10.3390/met10030350
22.
Bakhsheshi-Rad
,
H. R.
,
Akbari
,
M.
,
Ismail
,
A. F.
,
Aziz
,
M.
,
Hadisi
,
Z.
,
Pagan
,
E.
,
Daroonparvar
,
M.
, and
Chen
,
X.
,
2019
, “
Coating Biodegradable Magnesium Alloys With Electrospun Poly-L-Lactic Acid-åkermanite-Doxycycline Nanofibers for Enhanced Biocompatibility, Antibacterial Activity, and Corrosion Resistance
,”
Surf. Coat. Technol.
,
377
, p.
124898
. 10.1016/j.surfcoat.2019.124898
23.
Panahi
,
Z.
,
Tamjid
,
E.
, and
Rezaei
,
M.
,
2020
, “
Surface Modification of Biodegradable AZ91 Magnesium Alloy by Electrospun Polymer Nanocomposite: Evaluation of in Vitro Degradation and Cytocompatibility
,”
Surf. Coat. Technol.
,
386
, p.
125461
. 10.1016/j.surfcoat.2020.125461
24.
Alvarez-Lopez
,
M.
,
Pereda
,
M. D.
,
Del Valle
,
J. A.
,
Fernandez-Lorenzo
,
M.
,
Garcia-Alonso
,
M. C.
,
Ruano
,
O. A.
, and
Escudero
,
M. L.
,
2010
, “
Corrosion Behaviour of AZ31 Magnesium Alloy With Different Grain Sizes in Simulated Biological Fluids
,”
Acta Biomater.
,
6
(
5
), pp.
1763
1771
. 10.1016/j.actbio.2009.04.041
25.
Ratna Sunil
,
B.
,
Sampath Kumar
,
T. S.
,
Chakkingal
,
U.
,
Nandakumar
,
V.
,
Doble
,
M.
,
Devi Prasad
,
V.
, and
Raghunath
,
M.
,
2016
, “
In Vitro and in Vivo Studies of Biodegradable Fine Grained AZ31 Magnesium Alloy Produced by Equal Channel Angular Pressing
,”
Mater. Sci. Eng. C
,
59
, pp.
356
367
. 10.1016/j.msec.2015.10.028
26.
Zhang
,
S. H.
,
Xu
,
Y. C.
,
Palumbo
,
G.
,
Pinto
,
S.
,
Tricarico
,
L.
,
Wang
,
Z. T.
, and
Zhang
,
Q. L.
,
2005
, “
Formability and Process Conditions of Magnesium Alloy Sheets
,”
Mater. Sci. Forum
,
488-489
, pp.
453
456
. 10.4028/www.scientific.net/MSF.488-489.453
27.
Fua-Nizan
,
R.
,
Abdul Rani
,
A. M.
, and
Yazid Din
,
M.
,
2017
, “
Manufacturing Methods for Medical Artificial Prostheses—A Review
,”
Malaysian J. Fundam. Appl. Sci.
,
13
(
4–2
), pp.
464
469
. 10.11113/mjfas.v13n4-2.772
28.
Saptaji
,
K.
,
Gebremariam
,
M. A.
, and
Azhari
,
M. A. B. M.
,
2018
, “
Machining of Biocompatible Materials: A Review
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
2255
2292
. 10.1007/s00170-018-1973-2
29.
Palumbo
,
G.
,
Sorgente
,
D.
, and
Tricarico
,
L.
,
2008
, “
Numerical-Experimental Analysis of Thin Magnesium Alloy Stripes Subjected to Stretch-Bending
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
183
188
. 10.1016/j.jmatprotec.2007.11.242
30.
Palumbo
,
G.
,
Sorgente
,
D.
,
Tricarico
,
L.
,
Zhang
,
S. H.
, and
Zheng
,
W. T.
,
2007
, “
Numerical and Experimental Investigations on the Effect of the Heating Strategy and the Punch Speed on the Warm Deep Drawing of Magnesium Alloy AZ31
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
342
346
.
31.
Ren
,
L. M.
,
Zhang
,
S. H.
,
Palumbo
,
G.
,
Sorgente
,
D.
, and
Tricarico
,
L.
,
2009
, “
Numerical Simulation on Warm Deep Drawing of Magnesium Alloy AZ31 Sheets
,”
Mater. Sci. Eng. A
,
499
(
1–2
), pp.
40
44
. 10.1016/j.msea.2007.11.132
32.
Zheng
,
W. T.
,
Zhang
,
S. H.
,
Sorgente
,
D.
,
Tricarico
,
L.
, and
Palumbo
,
G.
,
2007
, “
Approach of Using a Ductile Fracture Criterion in Deep Drawing of Magnesium Alloy Cylindrical Cups Under Non-Isothermal Condition
,”
Proc. Inst. Mech. Eng. B
,
221
(
6
), pp.
981
986
. 10.1243/09544054JEM756
33.
Zhang
,
S. H.
,
Ren
,
L. M.
,
Zhou
,
L. X.
,
Xu
,
Y. C.
,
Palumbo
,
G.
, and
Ricarico
,
L. T.
,
2007
, “
Warm Hydroforming of Magnesium Alloy AZ31 Sheets
,”
Mater. Sci. Forum
,
546–549
(
Part 1
), pp.
333
336
. 10.4028/www.scientific.net/MSF.546-549.333
34.
Sorgente
,
D.
,
Palumbo
,
G.
,
Scintilla
,
L. D.
, and
Tricarico
,
L.
,
2016
, “
Gas Forming of an AZ31 Magnesium Alloy at Elevated Strain Rates
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
861
872
. 10.1007/s00170-015-7614-0
35.
Ambrogio
,
G.
,
Filice
,
L.
, and
Manco
,
G. L.
,
2008
, “
Warm Incremental Forming of Magnesium Alloy AZ31
,”
CIRP Ann.—Manuf. Technol.
,
57
(
1
), pp.
257
260
. 10.1016/j.cirp.2008.03.066
36.
Palumbo
,
G.
,
Cusanno
,
A.
,
Garcia Romeu
,
M. L.
,
Bagudanch
,
I.
,
Contessi Negrini
,
N.
,
Villa
,
T.
, and
Farè
,
S.
,
2019
, “
Single Point Incremental Forming and Electrospinning to Produce Biodegradable Magnesium (AZ31) Biomedical Prostheses Coated With Porous PCL
,”
Mater. Today: Proc.
,
7
(
1
), pp.
394
401
. 10.1016/j.matpr.2018.11.101
37.
Ambrogio
,
G.
,
De Napoli
,
L.
,
Filice
,
L.
,
Gagliardi
,
F.
, and
Muzzupappa
,
M.
,
2005
, “
Application of Incremental Forming Process for High Customised Medical Product Manufacturing
,”
J. Mater. Process. Technol.
,
162–163
, pp.
156
162
. 10.1016/j.jmatprotec.2005.02.148
38.
Oleksik
,
V.
,
Pascu
,
A.
,
Deac
,
C.
,
Fleaca
,
R.
,
Roman
,
M.
, and
Bologa
,
O.
,
2010
, “
The Influence of Geometrical Parameters on the Incremental Forming Process for Knee Implants Analyzed by Numerical Simulation
,”
AIP Conf. Proc.
,
1252
(
1
), pp.
1208
1215
. 10.1063/1.3457520
39.
Eksteen
,
V.
, and
Van der Merwe
,
A. F.
,
2012
, “
Incremental Sheet Forming (ISF) in the Manufacturing of Titanium Based Plate Implants in the Bio-Medical Sector
,”
The 42nd International Conference on Computers and Industrial Engineering (CIE42)
,
Cape Town, South Africa
,
July 16–18
.
40.
Centeno
,
G.
,
Morales-Palma
,
D.
,
Gonzalez-Perez-Somarriba
,
B.
,
Bagudanch
,
I.
,
Egea-Guerrero
,
J. J.
,
Gonzalez-Perez
,
L. M.
,
García-Romeu
,
M. L.
, and
Vallellano
,
C.
,
2017
, “
A Functional Methodology on the Manufacturing of Customized Polymeric Cranial Prostheses From CAT Using SPIF
,”
Rapid Prototyp. J.
,
23
(
4
), pp.
771
780
. 10.1108/RPJ-02-2016-0031
41.
Fiorentino
,
A.
,
Marenda
,
G. P.
,
Marzi
,
R.
,
Ceretti
,
E.
,
Kemmoku
,
D. T.
, and
Silva
,
J. V. L.
,
2012
, “
Rapid Prototyping Techniques for Individualized Medical Prosthesis Manufacturing
,”
Innov. Dev. Virtual Phys. Prototyp.
,
1
, pp.
589
594
.
42.
Fiorentino
,
A.
,
Marzi
,
R.
, and
Ceretti
,
E.
,
2012
, “
Preliminary Results on Ti Incremental Sheet Forming (ISF) of Biomedical Devices: Biocompatibility, Surface Finishing and Treatment
,”
Int. J. Mechatron. Manuf. Syst.
,
5
(
1
), p.
36
. 10.1504/IJMMS.2012.046146
43.
Araújo
,
R.
,
Teixeira
,
P.
,
Montanari
,
L.
,
Reis
,
A.
,
Silva
,
M. B.
, and
Martins
,
P. A. F.
,
2014
, “
Single Point Incremental Forming of a Facial Implant
,”
Prosthet. Orthot. Int.
,
38
(
5
), pp.
369
378
. 10.1177/0309364613502071
44.
Ambrogio
,
G.
,
Palumbo
,
G.
,
Sgambitterra
,
E.
,
Guglielmi
,
P.
,
Piccininni
,
A.
,
De Napoli
,
L.
,
Villa
,
T.
, and
Fragomeni
,
G.
,
2018
, “
Experimental Investigation of the Mechanical Performances of Titanium Cranial Prostheses Manufactured by Super Plastic Forming and Single-Point Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
98
(
5–8
), pp.
1489
1503
. 10.1007/s00170-018-2338-6
45.
Vanhove
,
H.
,
Carette
,
Y.
,
Vancleef
,
S.
, and
Duflou
,
J. R.
,
2017
, “
Production of Thin Shell Clavicle Implants Through Single Point Incremental Forming
,”
Procedia Eng.
,
183
, pp.
174
179
. 10.1016/j.proeng.2017.04.058
46.
Lozano-Sánchez
,
L.
,
Bagudanch
,
I.
,
Sustaita
,
A.
,
Iturbe-Ek
,
J.
,
Elizalde
,
L.
,
Garcia-Romeu
,
M.
, and
Elías-Zúñiga
,
A.
,
2018
, “
Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight Into Their Thermal and Structural Properties
,”
Polymers
,
10
(
4
), p.
391
. 10.3390/polym10040391
47.
ASTM E112-13, 2013, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PAwww.astm.org
.
48.
Meskinfam
,
M.
,
Bertoldi
,
S.
,
Albanese
,
N.
,
Cerri
,
A.
,
Tanzi
,
M. C.
,
Imani
,
R.
,
Baheiraei
,
N.
,
Farokhi
,
M.
, and
Farè
,
S.
,
2018
, “
Polyurethane Foam/Nano Hydroxyapatite Composite as a Suitable Scaffold for Bone Tissue Regeneration
,”
Mater. Sci. Eng. C
,
82
, pp.
130
140
. 10.1016/j.msec.2017.08.064
49.
Kieke
,
M.
,
Feyerabend
,
F.
,
Lemaitre
,
J.
,
Behrens
,
P.
, and
Willumeit-Römer
,
R.
,
2016
, “
Degradation Rates and Products of Pure Magnesium Exposed to Different Aqueous Media Under Physiological Conditions
,”
BioNanoMaterials
,
17
(
3–4
), pp.
131
143
.
50.
Rabionet
,
M.
,
Puig
,
T.
, and
Ciurana
,
J.
,
2017
, “
Electrospinning Parameters Selection to Manufacture Polycaprolactone Scaffolds for Three-Dimensional Breast Cancer Cell Culture and Enrichment
,”
Procedia CIRP
,
65
, pp.
267
272
. 10.1016/j.procir.2017.03.341
51.
Zhao
,
Y.
,
Jamesh
,
M. I.
,
Li
,
W. K.
,
Wu
,
G.
,
Wang
,
C.
,
Zheng
,
Y.
,
Yeung
,
K. W. K.
, and
Chu
,
P. K.
,
2014
, “
Enhanced Antimicrobial Properties, Cytocompatibility, and Corrosion Resistance of Plasma-Modified Biodegradable Magnesium Alloys
,”
Acta Biomater.
,
10
(
1
), pp.
544
556
. 10.1016/j.actbio.2013.10.012
52.
Ostrowski
,
N.
,
Lee
,
B.
,
Enick
,
N.
,
Carlson
,
B.
,
Kunjukunju
,
S.
,
Roy
,
A.
, and
Kumta
,
P. N.
,
2013
, “
Corrosion Protection and Improved Cytocompatibility of Biodegradable Polymeric Layer-by-Layer Coatings on AZ31 Magnesium Alloys
,”
Acta Biomater.
,
9
(
10
), pp.
8704
8713
. 10.1016/j.actbio.2013.05.010
53.
Fischer
,
J.
,
Pröfrock
,
D.
,
Hort
,
N.
,
Willumeit
,
R.
, and
Feyerabend
,
F.
,
2011
, “
Improved Cytotoxicity Testing of Magnesium Materials
,”
Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol.
,
176
(
20
), pp.
1773
1777
. 10.1016/j.mseb.2011.06.002
54.
Gupta
,
P.
, and
Jeswiet
,
J.
,
2018
, “
Effect of Temperatures During Forming in Single Point Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
3693
3706
. 10.1007/s00170-017-1400-0
55.
Lee
,
S.
,
Ham
,
H. J.
,
Kwon
,
S. Y.
,
Kim
,
S. W.
, and
Suh
,
C. M.
,
2013
, “
Thermal Conductivity of Magnesium Alloys in the Temperature Range From −125 °C to 400 °C
,”
Int. J. Thermophys.
,
34
(
12
), pp.
2343
2350
. 10.1007/s10765-011-1145-1
56.
Liu
,
X.
,
Jonas
,
J. J.
,
Li
,
L. X.
, and
Zhu
,
B. W.
,
2013
, “
Flow Softening, Twinning and Dynamic Recrystallization in AZ31 Magnesium
,”
Mater. Sci. Eng. A
,
583
, pp.
242
253
. 10.1016/j.msea.2013.06.074
57.
Fatemi-Varzaneh
,
S. M.
,
Zarei-Hanzaki
,
A.
, and
Beladi
,
H.
,
2007
, “
Dynamic Recrystallization in AZ31 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
456
(
1–2
), pp.
52
57
. 10.1016/j.msea.2006.11.095
58.
Park
,
J.
,
Kim
,
J.
,
Park
,
N.
, and
Kim
,
Y.
,
2010
, “
Study of Forming Limit for Rotational Incremental Sheet Forming of Magnesium Alloy Sheet
,”
Metall. Mater. Trans. A
,
41
(
1
), pp.
97
105
. 10.1007/s11661-009-0043-7
59.
Galdos
,
L.
,
de Argandoña
,
E. S.
,
Ulacia
,
I.
, and
Arruebarrena
,
G.
,
2012
, “
Warm Incremental Forming of Magnesium Alloys Using Hot Fluid as Heating Media
,”
Key Eng. Mater.
,
504–506
, pp.
815
820
. 10.4028/www.scientific.net/KEM.504-506.815
60.
Al-Samman
,
T.
, and
Gottstein
,
G.
,
2008
, “
Dynamic Recrystallization During High Temperature Deformation of Magnesium
,”
Mater. Sci. Eng. A
,
490
(
1–2
), pp.
411
420
. 10.1016/j.msea.2008.02.004
61.
Witte
,
F.
,
Feyerabend
,
F.
,
Maier
,
P.
,
Fischer
,
J.
,
Störmer
,
M.
,
Blawert
,
C.
,
Dietzel
,
W.
, and
Hort
,
N.
,
2007
, “
Biodegradable Magnesium-Hydroxyapatite Metal Matrix Composites
,”
Biomaterials
,
28
(
13
), pp.
2163
2174
. 10.1016/j.biomaterials.2006.12.027
62.
Li
,
Y.
,
Chen
,
X.
,
Zhai
,
W.
,
Wang
,
L.
,
Li
,
J.
, and
Guoqun
,
Z.
,
2018
, “
Effects of Process Parameters on Thickness Thinning and Mechanical Properties of the Formed Parts in Incremental Sheet Forming
,”
Int. J. Adv. Manuf. Technol.
,
98
(
9–12
), pp.
3071
3080
. 10.1007/s00170-018-2469-9
63.
Wei
,
W.
,
Petrini
,
L.
,
Altomare
,
L.
,
Farè
,
S.
,
Tremamunno
,
R.
,
Zhentao
,
Y.
, and
Migliavacca
,
F.
,
2014
, “
Modeling and Experimental Studies of Peeling of Polymer Coating for Biodegradable Magnesium Alloy Stents
,”
Rare Metal Mater. Eng.
,
43
(
12
), pp.
2877
2882
.
64.
Wagener
,
V.
,
Schilling
,
A.
,
Mainka
,
A.
,
Hennig
,
D.
,
Gerum
,
R.
,
Kelch
,
M. L.
,
Keim
,
S.
,
Fabry
,
B.
, and
Virtanen
,
S.
,
2016
, “
Cell Adhesion on Surface-Functionalized Magnesium
,”
ACS Appl. Mater. Interfaces
,
8
(
19
), pp.
11998
12006
. 10.1021/acsami.6b01747
65.
Rahman
,
M.
,
Dutta
,
N. K.
, and
Roy Choudhury
,
N.
,
2020
, “
Magnesium Alloys With Tunable Interfaces as Bone Implant Materials
,”
Front. Bioeng. Biotechnol.
,
8
. 10.3389/fbioe.2020.00564
66.
Johnson
,
I.
,
Perchy
,
D.
, and
Liu
,
H.
,
2012
, “
In Vitro Evaluation of the Surface Effects on Magnesium-Yttrium Alloy Degradation and Mesenchymal Stem Cell Adhesion
,”
J. Biomedical Mater. Res. Part A
,
100A
(
2
), pp.
477
485
. 10.1002/jbm.a.33290
You do not currently have access to this content.