Abstract

Numerical modeling of the plastic deformation and fracture during the high-speed machining is highly challengeable. Consequently, there is a need for an advanced constitutive model and fracture criterion to make the numerical models more reliable. The aim of the present study is to extend the recent advanced static Lou-Yoon-Huh (LYH) ductile fracture creation to high strain rate and temperature applications such as machining. In the present work, the LYH static fracture creation was extended to machining conditions by introducing strain rate and temperature dependency terms. This extended LYH fracture criterion was calibrated over the wide range of stress triaxialities and different temperatures. Modified Khan- Huang-Liang (KHL) constitutive model along with the variable friction model was employed to predict the flow behavior of work material during the machining simulation. Damage evolution method was coupled to identify the element deletion point during the machining simulation. Orthogonal machining experiments were carried out for an aerospace-grade AA2024-T351 at cutting speeds varying between 100 and 400 m/min with the feed rates varying between 0.1 and 0.3 mm/rev. To assess the prediction capabilities of extended LYH fracture criterion, numerical simulations were also carried out using Johnson-Cook (JC) fracture criterion under all experimental conditions. Specific cutting energy, chip morphology, and compression ratio predictions were compared with the experimental data. Numerical predictions with coupled extended LYH criterion showed good agreement with experimental results compared to coupled JC fracture criterion.

References

1.
Seshadri
,
R.
,
Naveen
,
I.
,
Srinivasan
,
S.
,
Viswasubrahmanyam
,
M.
,
VijaySekar
,
K. S.
, and
Pradeep Kumar
,
M.
,
2013
, “
Finite Element Simulation of the Orthogonal Machining Process With Al 2024 T351 Aerospace Alloy
,”
Procedia Eng.
,
64
, pp.
1454
1463
.
2.
Maranhão
,
C.
, and
Davim
,
J. P.
,
2010
, “
Finite Element Modelling of Machining of AISI 316 Steel: Numerical Simulation and Experimental Validation
,”
Simul. Model. Pract. Theory
,
18
(
2
), pp.
139
156
.
3.
Umbrello
,
D.
,
2008
, “
Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4 V Alloy
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
79
87
.
4.
Sima
,
M.
, and
Özel
,
T.
,
2010
, “
Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti–6Al–4 V
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
943
960
.
5.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4 V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
6.
Wang
,
B.
,
Liu
,
Z.
,
Song
,
Q.
,
Wan
,
Y.
, and
Ren
,
X.
,
2019
, “
A Modified Johnson–Cook Constitutive Model and Its Application to High Speed Machining of 7050-T7451 Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011012
.
7.
Huang
,
Y.
,
Ji
,
J.
, and
Lee
,
K.-M.
,
2018
, “
An Improved Material Constitutive Model Considering Temperature-Dependent Dynamic Recrystallization for Numerical Analysis of Ti-6Al-4V Alloy Machining
,”
Int. J. Adv. Manuf. Technol.
,
97
(
9
), pp.
3655
3670
.
8.
Niu
,
L.
,
Cao
,
M.
,
Liang
,
Z.
,
Han
,
B.
, and
Zhang
,
Q.
,
2020
, “
A Modified Johnson-Cook Model Considering Strain Softening of A356 Alloy
,”
Mater. Sci. Eng. A
,
789
, p.
139612
.
9.
Chen
,
X.-M.
,
Lin
,
Y. C.
,
Hu
,
H.-W.
,
Luo
,
S.-C.
,
Zhou
,
X.-J.
, and
Huang
,
Y.
,
2021
, “
An Enhanced Johnson–Cook Model for Hot Compressed A356 Aluminum Alloy
,”
Adv. Eng. Mater.
,
23
(
1
), p.
2000704
.
10.
Arrazola
,
P. J.
, and
Özel
,
T. R.
,
2010
, “
Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
31
42
.
11.
Özel
,
T.
,
2006
, “
The Influence of Friction Models on Finite Element Simulations of Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
518
530
.
12.
Astakhov
,
V. P.
,
1998
,
Metal Cutting Mechanics
,
CRC Press
,
Boca Raton, FL
.
13.
Abushawashi
,
Y.
,
Xiao
,
X.
, and
Astakhov
,
V.
,
2013
, “
A Novel Approach for Determining Material Constitutive Parameters for a Wide Range of Triaxiality Under Plane Strain Loading Conditions
,”
Int. J. Mech. Sci.
,
74
, pp.
133
142
.
14.
McClain
,
B.
,
Batzer
,
S. A.
, and
Maldonado
,
G. I.
,
2002
, “
A Numeric Investigation of the Rake Face Stress Distribution in Orthogonal Machining
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
114
119
.
15.
Mamalis
,
A.
,
Branis
,
A.
, and
Manolakos
,
D. E.
,
2002
, “
Modelling of Precision Hard Cutting Using Implicit Finite Element Methods
,”
J. Mater. Process. Technol.
,
123
(
3
), pp.
464
475
.
16.
Sasahara
,
H.
,
Obikawa
,
T.
, and
Shirakashi
,
T.
,
1996
, “
FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
448
453
.
17.
Lo
,
S.-P.
, and
Lin
,
Y.-Y.
,
2002
, “
An Investigation of Sticking Behavior on the Chip–Tool Interface Using Thermo-Elastic–Plastic Finite Element Method
,”
J. Mater. Process. Technol.
,
121
(
2–3
), pp.
285
292
.
18.
Heinstein
,
M.
, and
Segalman
,
D.
,
1997
, “
Simulation of Orthogonal Cutting With Smooth Particle Hydrodynamics
,”
Livermore, CA
.
19.
Shi
,
J.
, and
Liu
,
C. R.
,
2006
, “
On Predicting Chip Morphology and Phase Transformation in Hard Machining
,”
Int. J. Adv. Manuf. Technol.
,
27
(
7–8
), pp.
645
654
.
20.
Jaspers
,
S.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
,
122
(
2–3
), pp.
322
330
.
21.
Yang
,
X.
, and
Liu
,
C. R.
,
2002
, “
A New Stress-Based Model of Friction Behavior in Machining and Its Significant Impact on Residual Stresses Computed by Finite Element Method
,”
Int. J. Mech. Sci.
,
44
(
4
), pp.
703
723
.
22.
Lin
,
Z.-C.
, and
Lo
,
S.-P.
,
2001
, “
2-D Discontinuous Chip Cutting Model by Using Strain Energy Density Theory and Elastic-Plastic Finite Element Method
,”
Int. J. Mech. Sci.
,
43
(
2
), pp.
381
398
.
23.
Lin
,
Z.
, and
Lin
,
Y.
,
2001
, “
Three-Dimensional Elastic–Plastic Finite Element Analysis for Orthogonal Cutting With Discontinuous Chip of 6-4 Brass
,”
Theor. Appl. Fract. Mech.
,
35
(
2
), pp.
137
153
.
24.
Zhang
,
L.
,
1999
, “
On the Separation Criteria in the Simulation of Orthogonal Metal Cutting Using the Finite Element Method
,”
J. Mater. Process. Technol.
,
89–90
, pp.
273
278
.
25.
Besson
,
J.
,
2010
, “
Continuum Models of Ductile Fracture: A Review
,”
Int. J. Damage. Mech.
,
19
(
1
), pp.
3
52
.
26.
Liu
,
J.
,
Bai
,
Y.
, and
Xu
,
C.
,
2013
, “
Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011010
.
27.
Goods
,
S. H.
, and
Brown
,
L. M.
,
1979
, “
Overview No. 1: The Nucleation of Cavities by Plastic Deformation
,”
Acta Metall.
,
27
(
1
), pp.
1
15
.
28.
Argon
,
A. S.
,
Im
,
J.
, and
Safoglu
,
R.
,
1975
, “
Cavity Formation From Inclusions in Ductile Fracture
,”
Metallurgical Transactions A
,
6
(
4
), p.
825
837
.
29.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
30.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields*
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
31.
Hua
,
J.
, and
Shivpuri
,
R.
,
2004
, “
Prediction of Chip Morphology and Segmentation During the Machining of Titanium Alloys
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
124
133
.
32.
Atkins
,
A. G.
,
2003
, “
Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
,”
Int. J. Mech. Sci.
,
45
(
2
), pp.
373
396
.
33.
Abushawashi
,
Y.
,
Xiao
,
X.
, and
Astakhov
,
V.
,
2017
, “
Practical Applications of the “Energy–Triaxiality” State Relationship in Metal Cutting
,”
Mach. Sci. Technol.
,
21
(
1
), pp.
1
18
.
34.
Lou
,
Y.
,
Yoon
,
J. W.
, and
Huh
,
H.
,
2014
, “
Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality
,”
Int. J. Plast.
,
54
, pp.
56
80
.
35.
Lou
,
Y.
, and
Huh
,
H.
,
2013
, “
Extension of a Shear-Controlled Ductile Fracture Model Considering the Stress Triaxiality and the Lode Parameter
,”
Int. J. Solids Struct.
,
50
(
2
), pp.
447
455
.
36.
Oyane
,
M.
,
Sato
,
T.
,
Okimoto
,
K.
, and
Shima
,
S.
,
1980
, “
Criteria for Ductile Fracture and Their Applications
,”
J. Mech. Work. Technol.
,
4
(
1
), pp.
65
81
.
37.
Oh
,
S. I.
,
Chen
,
C. C.
, and
Kobayashi
,
S.
,
1979
, “
Ductile Fracture in Axisymmetric Extrusion and Drawing—Part 2: Workability in Extrusion and Drawing
,”
ASME J. Eng. Ind.
,
101
(
1
), pp.
36
44
.
38.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
(
6
), pp.
1071
1096
.
39.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.
40.
Lou
,
Y.
,
Huh
,
H.
,
Lim
,
S.
, and
Pack
,
K.
,
2012
, “
New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals
,”
Int. J. Solids Struct.
,
49
(
25
), pp.
3605
3615
.
41.
Yaich
,
M.
,
Ayed
,
Y.
,
Bouaziz
,
Z.
, and
Germain
,
G.
,
2016
, “
Numerical Analysis of Constitutive Coefficients Effects on FE Simulation of the 2D Orthogonal Cutting Process: Application to the Ti6Al4 V
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
283
303
.
42.
Pan
,
H.
,
Liu
,
J.
,
Choi
,
Y.
,
Xu
,
C.
,
Bai
,
Y.
, and
Atkins
,
T.
,
2016
, “
Zones of Material Separation in Simulations of Cutting
,”
Int. J. Mech. Sci.
,
115–116
, pp.
262
279
.
43.
Jagadesh
,
T.
, and
Samuel
,
G. L.
,
2015
, “
Mechanistic and Finite Element Model for Prediction of Cutting Forces During Micro-turning of Titanium Alloy
,”
Mach. Sci. Technol.
,
19
(
4
), pp.
593
629
.
44.
Hancock
,
J. W.
, and
Mackenzie
,
A. C.
,
1976
, “
On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-axial Stress-States
,”
J. Mech. Phys. Solids
,
24
(
2
), pp.
147
160
.
45.
Xue
,
L.
,
2008
, “
Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3343
3366
.
46.
Mabrouki
,
T.
,
Girardin
,
F.
,
Asad
,
M.
, and
Rigal
,
J.-F.
,
2008
, “
Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351)
,”
Int. J. Mach. Tools Manuf.
,
48
(
11
), pp.
1187
1197
.
47.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2005
, “
On the Cut-Off Value of Negative Triaxiality for Fracture
,”
Eng. Fract. Mech.
,
72
(
7
), pp.
1049
1069
.
48.
Wang
,
B.
, and
Liu
,
Z.
,
2016
, “
Evaluation on Fracture Locus of Serrated Chip Generation With Stress Triaxiality in High Speed Machining of Ti6Al4 V
,”
Mater. Des.
,
98
, pp.
68
78
.
49.
Buchkremer
,
S.
,
Klocke
,
F.
, and
Lung
,
D.
,
2015
, “
Finite-Element-Analysis of the Relationship Between Chip Geometry and Stress Triaxiality Distribution in the Chip Breakage Location of Metal Cutting Operations
,”
Simul. Modell. Pract. Theory
,
55
, pp.
10
26
.
50.
Buchkremer
,
S.
,
Wu
,
B.
,
Lung
,
D.
,
Münstermann
,
S.
,
Klocke
,
F.
, and
Bleck
,
W.
,
2014
, “
FE-simulation of Machining Processes With a New Material Model
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
599
611
.
51.
Khan
,
A. S.
, and
Liu
,
H.
,
2012
, “
A New Approach for Ductile Fracture Prediction on Al 2024-T351 Alloy
,”
Int. J. Plast.
,
35
, pp.
1
12
.
52.
Pandya
,
K. S.
,
Roth
,
C. C.
, and
Mohr
,
D.
,
2020
, “
Strain Rate and Temperature Dependent Fracture of Aluminum Alloy 7075: Experiments and Neural Network Modeling
,”
Int. J. Plast.
,
135
, p.
102788
.
53.
Luo
,
M.
,
Chen
,
X.
,
Shi
,
M. F.
, and
Shih
,
H. C.
,
2010
, “
Numerical Analysis of AHSS Fracture in a Stretch-Bending Test
,”
AIP Conference Proceedings of the 10th International Conference on NUMIFORM 1252
,
Pohang, South Korea
.
54.
Lou
,
Y.
, and
Huh
,
H.
,
2013
, “
Prediction of Ductile Fracture for Advanced High Strength Steel With a New Criterion: Experiments and Simulation
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1284
1302
.
55.
Asad
,
M.
,
Girardin
,
F.
,
Mabrouki
,
T.
, and
Rigal
,
J. F.
,
2008
, “
Dry Cutting Study of an Aluminium Alloy (A2024-T351): A Numerical and Experimental Approach
,”
Int. J. Mater. Form.
,
1
(
SUPPL. 1
), pp.
499
502
.
56.
Dunand
,
M.
, and
Mohr
,
D.
,
2010
, “
Hybrid Experimental–Numerical Analysis of Basic Ductile Fracture Experiments for Sheet Metals
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1130
1143
.
57.
Teng
,
X.
, and
Wierzbicki
,
T.
,
2006
, “
Evaluation of Six Fracture Models in High Velocity Perforation
,”
Eng. Fract. Mech.
,
73
(
12
), pp.
1653
1678
.
58.
Hibbitt
,
Karlsson
, and
Sorensen
,
Abaqus/Explicit Theory and User Manuals, Version 6.6.1, 2006
.
59.
Paresi
,
P. R.
,
Lou
,
Y.
,
Narayanan
,
A.
, and
Yoon
,
J. W.
,
2019
, “
Enhanced Constitutive Model for Aeronautic Aluminium Alloy (AA2024-T351) Under High Strain Rates and Elevated Temperatures
,”
Int. J. Automot. Technol.
,
20
(
1
), pp.
79
87
.
60.
Aurich
,
J. C.
, and
Bil
,
H.
,
2006
, “
3D Finite Element Modelling of Segmented Chip Formation
,”
CIRP Ann.
,
55
(
1
), pp.
47
50
.
61.
Shivpuri
,
R.
,
Hua
,
J.
,
Mittal
,
P.
,
Srivastava
,
A.
, and
Lahoti
,
G. D.
,
2002
, “
Microstructure-Mechanics Interactions in Modeling Chip Segmentation During Titanium Machining
,”
CIRP Ann.
,
51
(
1
), pp.
71
74
.
62.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
).
63.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2014
, “
Stress Triaxiality in Chip Segmentation During High Speed Machining of Titanium Alloy
,”
ASME 2014 International Manufacturing Science and Engineering Conference
,
Detroit, MI
, Vol. 45813, p. V002T002A033.
64.
Ambati
,
R.
, and
Yuan
,
H.
,
2010
, “
FEM Mesh-Dependence in Cutting Process Simulations
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
313
323
.
You do not currently have access to this content.