Abstract

Micro-milling is widely used in various crucial fields with the ability of machining micro- and meso-scaled functional structures on various materials efficiently. However, the micro-milling force model is not comprehensively developed yet when tool feature sizes continually decrease to under 200 µm in a low-stiffness system. This paper proposes an analytical force model considering the influence of tool radius, size effect, tool runout, tool deflection, and the actual trochoidal trajectories and the interaction of historical tool teeth trajectories (IHTTT). Different micro-milling status are recognized by analyzing the cutting process of different tool teeth. Conditions of single-tooth cutting status are determined by a proposed numerical algorithm, and entry angle and exit angle are analyzed under various cutting conditions for the low-stiffness system. Three micro-milling status, including single-tooth cutting status, are distinguished based on the instantaneous undeformed chip thickness resulting in three types of material removal mechanisms in predicting micro-milling force components. Discontinuous change rates of undeformed chip thickness are found in the low-stiffness micro-milling system. The proposed micro-milling force model is then verified through experiments of micro slot milling Elgiloy alloy with a 150-μm-diametrical two-teeth micro-end mill. The experimental results show a root-mean-square error (RSME) of 0.092 N in the predicted resultant force, accounting for approximately 5.12% of the measured force, by which the proposed theoretical model is verified to be of good prediction accuracy.

References

1.
Lu
,
X.
,
Jia
,
Z.
,
Liu
,
S.
,
Yang
,
K.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2019
, “
Chatter Stability of Micro-Milling by Considering the Centrifugal Force and Gyroscopic Effect of the Spindle
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111003
.
2.
Germain
,
D.
,
Fromentin
,
G.
,
Poulachon
,
G.
, and
Bissey-Breton
,
S.
,
2013
, “
From Large-Scale to Micromachining: A Review of Force Prediction Models
,”
J. Manuf. Processes
,
15
(
3
), pp.
389
401
.
3.
Arrazola
,
P.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann
,
62
(
2
), pp.
695
718
.
4.
Afazov
,
S.
,
Ratchev
,
S.
, and
Segal
,
J.
,
2010
, “
Modelling and Simulation of Micro-Milling Cutting Forces
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2154
2162
.
5.
Afazov
,
S.
,
Zdebski
,
D.
,
Ratchev
,
S.
,
Segal
,
J.
, and
Liu
,
S.
,
2013
, “
Effects of Micro-Milling Conditions on the Cutting Forces and Process Stability
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
671
684
.
6.
Hu
,
C.
,
Zhuang
,
K.
,
Weng
,
J.
, and
Zhang
,
X.
,
2019
, “
Thermal-Mechanical Model for Cutting With Negative Rake Angle Based on a Modified Slip-Line Field Approach
,”
Int. J. Mech. Sci.
,
164
, p.
105167
.
7.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
.
8.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part II: Analysis of the Size Effect and the Shear Strain-Rate
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
743
762
.
9.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.
10.
Jun
,
M. B.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
901
912
.
11.
Vogler
,
M. P.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
695
705
.
12.
Qu
,
D.
,
Wang
,
B.
, and
Peng
,
Z.
,
2017
, “
The Influence of Processing Parameters on Surface Characteristics in Micro-Milling Thin-Walled Slot on Elgiloy
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2843
2852
.
13.
Qu
,
D.
,
Zheng
,
W.
,
Wang
,
B.
,
Wu
,
B.
, and
Yi
,
H.
,
2020
, “
Nondestructive Acquisition of the Micro-Mechanical Properties of High-Speed-Dry Milled Micro-Thin Walled Structures Based on Surface Traits
,”
Chin. J. Aeronaut.
,
34
(
5
), pp.
438
451
.
14.
Zhou
,
L.
,
Peng
,
F.
,
Yan
,
R.
,
Yao
,
P.
,
Yang
,
C.
, and
Li
,
B.
,
2015
, “
Analytical Modeling and Experimental Validation of Micro End-Milling Cutting Forces Considering Edge Radius and Material Strengthening Effects
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
29
41
.
15.
Li
,
K.
,
Zhu
,
K.
, and
Mei
,
T.
,
2016
, “
A Generic Instantaneous Undeformed Chip Thickness Model for the Cutting Force Modeling in Micromilling
,”
Int. J. Mach. Tools Manuf.
,
105
, pp.
23
31
.
16.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B.
,
2009
, “
Modeling of Dynamic Micro-Milling Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
49
(
7-8
), pp.
586
598
.
17.
Li
,
C.
,
Lai
,
X.
,
Li
,
H.
, and
Ni
,
J.
,
2007
, “
Modeling of Three-Dimensional Cutting Forces in Micro-End-Milling
,”
J. Micromech. Microeng.
,
17
(
4
), p.
671
678
.
18.
Rodríguez
,
P.
, and
Labarga
,
J.
,
2013
, “
A new Model for the Prediction of Cutting Forces in Micro-End-Milling Operations
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
261
268
.
19.
Zhang
,
X.
,
Ehmann
,
K. F.
,
Yu
,
T.
, and
Wang
,
W.
,
2016
, “
Cutting Forces in Micro-End-Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
107
, pp.
21
40
.
20.
Li
,
H.
,
Liu
,
K.
, and
Li
,
X.
,
2001
, “
A New Method for Determining the Undeformed Chip Thickness in Milling
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
378
384
.
21.
Srinivasa
,
Y.
, and
Shunmugam
,
M.
,
2013
, “
Mechanistic Model for Prediction of Cutting Forces in Micro End-Milling and Experimental Comparison
,”
Int. J. Mach. Tools Manuf.
,
67
, pp.
18
27
.
22.
Bao
,
W.
, and
Tansel
,
I.
,
2000
, “
Modeling Micro-End-Milling Operations. Part I: Analytical Cutting Force Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2155
2173
.
23.
Bao
,
W.
, and
Tansel
,
I.
,
2000
, “
Modeling Micro-End-Milling Operations. Part II: Tool Runout
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2175
2192
.
24.
Chen
,
N.
,
Chen
,
M.
,
Wu
,
C.
,
Pei
,
X.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2017
, “
Research in Minimum Undeformed Chip Thickness and Size Effect in Micro End-Milling of Potassium Dihydrogen Phosphate Crystal
,”
Int. J. Mech. Sci.
,
134
, pp.
387
398
.
25.
Biermann
,
D.
, and
Kahnis
,
P.
,
2010
, “
Analysis and Simulation of Size Effects in Micromilling
,”
Prod. Eng.
,
4
(
1
), pp.
25
34
.
26.
Chae
,
J.
,
Park
,
S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
313
332
.
27.
Ramos
,
A. C.
,
Autenrieth
,
H.
,
Strauß
,
T.
,
Deuchert
,
M.
,
Hoffmeister
,
J.
, and
Schulze
,
V.
,
2012
, “
Characterization of the Transition From Ploughing to Cutting in Micro Machining and Evaluation of the Minimum Thickness of Cut
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
594
600
.
28.
Jun
,
M. B.
,
Goo
,
C.
,
Malekian
,
M.
, and
Park
,
S.
,
2012
, “
A New Mechanistic Approach for Micro End Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011006
.
29.
Kang
,
I. S.
,
Kim
,
J. S.
,
Kim
,
J. H.
,
Kang
,
M. C.
, and
Seo
,
Y. W.
,
2007
, “
A Mechanistic Model of Cutting Force in the Micro End Milling Process
,”
J. Mater. Process. Technol.
,
187
, pp.
250
255
.
30.
Sahoo
,
P.
,
Patra
,
K.
,
Singh
,
V. K.
,
Mittal
,
R. K.
, and
Singh
,
R. K.
,
2020
, “
Modeling Dynamic Stability and Cutting Forces in Micro Milling of Ti6Al4V Using Intermittent Oblique Cutting Finite Element Method Simulation-Based Force Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091005
.
31.
Chen
,
W.
,
Lu
,
L.
,
Xie
,
W.
,
Huo
,
D.
, and
Yang
,
K.
,
2018
, “
A New Surface Topography-Based Method to Quantify Axial Error of High Speed Milling Cutters
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111014
.
32.
Kanlı
,
M.
,
2014
,
Modeling of Cutting Forces in Micro Milling Including Runout
,
Bilkent University
,
Turkey
.
33.
Le
,
B.
,
Khaliq
,
J.
,
Huo
,
D.
,
Teng
,
X.
, and
Shyha
,
I.
,
2020
, “
A Review on Nanocomposites. Part 2: Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
100802
.
34.
Jackson
,
A.
,
Vincent
,
J.
, and
Turner
,
R.
,
1990
, “
Comparison of Nacre With Other Ceramic Composites
,”
J. Mater. Sci.
,
25
(
7
), pp.
3173
3178
.
35.
Hsieh
,
C.
,
Tuan
,
W.
, and
Wu
,
T.
,
2004
, “
Elastic Behaviour of a Model Two-Phase Material
,”
J. Eur. Ceram. Soc.
,
24
(
15–16
), pp.
3789
3793
.
36.
Golovchan
,
V. T.
,
2007
, “
On the Thermal Residual Microstresses in WC–Co Hard Metals
,”
Int. J. Refract. Met. Hard Mater.
,
25
(
4
), pp.
341
344
.
37.
DeVor
,
R.E.
,
Kline
,
W.A.
, and
Zdeblick
,
W.J.
,
1980
, “
A Mechanistic Model for the Force System in End Milling With Applications
,”
Proceedings of the Eighth North American Manufacturing Research Conference
,
Rolla, MO
,
May 19–22
.
You do not currently have access to this content.