Abstract

Three-dimensional (3D) extrusion printing of cellular/acellular structures with biocompatible materials has been widely investigated in recent years. However, the requirement of a suitable solidification rate of printable ink materials constrains the utilization of extrusion-based 3D printing techniques. In this study, the nanoclay yield-stress suspension-enabled extrusion-based 3D printing system has been investigated and demonstrated to overcome solidification rate constraints during printing. Utilizing the liquid–solid transition property of nanoclay suspension, two fabrication approaches, including nanoclay support bath-enabled printing and nanoclay-enabled direct printing, have been proposed. For the former approach, nanoclay (Laponite® EP) has been used as a support bath material to fabricate alginate-based tympanic membrane patches. The constituents of alginate-based ink have been investigated to have the desired mechanical property of alginate-based tympanic membrane patches and facilitate the printing process. For the latter approach, nanoclay (Laponite® XLG) has been used as an internal scaffold material to help print poly (ethylene glycol) diacrylate (PEGDA)-based neural chambers, which can be further cross-linked in air. Mechanical stress analysis has been performed to explore the geometric limitation of printable Laponite® XLG-PEGDA neural chambers.

References

1.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
2.
Mandrycky
,
C.
,
Wang
,
Z.
,
Kim
,
K.
, and
Kim
,
D. H.
,
2016
, “
3D Bioprinting for Engineering Complex Tissues
,”
Biotechnol. Adv.
,
34
(
4
), pp.
422
434
.
3.
Ozbolat
,
I. T.
,
Peng
,
W.
, and
Ozbolat
,
V.
,
2016
, “
Application Areas of 3D Bioprinting
,”
Drug Discovery Today
,
21
(
8
), pp.
1257
1271
.
4.
Phillippi
,
J. A.
,
Miller
,
E.
,
Weiss
,
L.
,
Huard
,
J.
,
Waggoner
,
A.
, and
Campbell
,
P.
,
2008
, “
Microenvironments Engineered by Inkjet Bioprinting Spatially Direct Adult Stem Cells Toward Muscle and Bone Like Subpopulations
,”
Stem Cells
,
26
(
1
), pp.
127
134
.
5.
Kucukgul
,
C.
,
Ozler
,
S. B.
,
Inci
,
I.
,
Karakas
,
E.
,
Irmak
,
S.
,
Gozuacik
,
D.
,
Taralp
,
A.
, and
Koc
,
B.
,
2015
, “
3D Bioprinting of Biomimetic Aortic Vascular Constructs With Self-Supporting Cells
,”
Biotechnol. Bioeng.
,
112
(
4
), pp.
811
821
.
6.
Xiong
,
R.
,
Zhang
,
Z.
,
Chai
,
W.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Freeform Drop-on-Demand Laser Printing of 3D Alginate and Cellular Constructs
,”
Biofabrication
,
7
(
4
), p.
045011
.
7.
Jin
,
Y.
,
Compaan
,
A.
,
Bhattacharjee
,
T.
, and
Huang
,
Y.
,
2016
, “
Granular Gel Support-Enabled Extrusion of Three-Dimensional Alginate and Cellular Structures
,”
Biofabrication
,
8
(
2
), p.
025016
.
8.
Ahlfeld
,
T.
,
Cidonio
,
G.
,
Kilian
,
D.
,
Duin
,
S.
,
Akkineni
,
A. R.
,
Dawson
,
J. I.
, and
Gelinsky
,
M.
,
2017
, “
Development of a Clay Based Bioink for 3D Cell Printing for Skeletal Application
,”
Biofabrication
,
9
(
3
), p.
034103
.
9.
Jin
,
Y.
,
Compaan
,
A.
,
Chai
,
W.
, and
Huang
,
Y.
,
2017
, “
Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
20057
20066
.
10.
Hockaday
,
L. A.
,
Kang
,
K. H.
,
Colangelo
,
N. W.
,
Cheung
,
P. Y. C.
,
Duan
,
B.
,
Malone
,
E.
, and
Chu
,
C. C.
,
2012
, “
Rapid 3D Printing of Anatomically Accurate and Mechanically Heterogeneous Aortic Valve Hydrogel Scaffolds
,”
Biofabrication
,
4
(
3
), p.
035005
.
11.
Schacht
,
K.
,
Jüngst
,
T.
,
Schweinlin
,
M.
,
Ewald
,
A.
,
Groll
,
J.
, and
Scheibel
,
T.
,
2015
, “
Biofabrication of Cell-Loaded 3D Spider Silk Constructs
,”
Angew. Chem. Int. Ed.
,
54
(
9
), pp.
2816
2820
.
12.
Jin
,
Y.
,
Liu
,
C.
,
Chai
,
W.
,
Compaan
,
A.
, and
Huang
,
Y.
,
2017
, “
Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air
,”
ACS Appl. Mater. Interfaces
,
9
(
20
), pp.
17456
17465
.
13.
Zhang
,
Z. F.
,
Ma
,
X.
,
Wang
,
H.
, and
Ye
,
F.
,
2018
, “
Influence of Polymerization Conditions on the Refractive Index of Poly (Ethylene Glycol) Diacrylate (PEGDA) Hydrogels
,”
Appl. Phys. A
,
124
(
4
), p.
283
.
14.
Chang
,
C. W.
,
van Spreeuwel
,
A.
,
Zhang
,
C.
, and
Varghese
,
S.
,
2010
, “
PEG/Clay Nanocomposite Hydrogel: A Mechanically Robust Tissue Engineering Scaffold
,”
Soft Matter
,
6
(
20
), pp.
5157
5164
.
15.
Ghadiri
,
M.
,
Chrzanowski
,
W.
,
Lee
,
W. H.
,
Fathi
,
A.
,
Dehghani
,
F.
, and
Rohanizadeh
,
R.
,
2013
, “
Physico-chemical, Mechanical and Cytotoxicity Characterizations of Laponite®/Alginate Nanocomposite
,”
Appl. Clay Sci.
,
85
, pp.
64
73
.
16.
Gaharwar
,
A. K.
,
Avery
,
R. K.
,
Assmann
,
A.
,
Paul
,
A.
,
McKinley
,
G. H.
,
Khademhosseini
,
A.
, and
Olsen
,
B. D.
,
2014
, “
Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage
,”
ACS Nano
,
8
(
10
), pp.
9833
9842
.
17.
Strens
,
D.
,
Knerer
,
G.
,
Van Vlaenderen
,
I.
, and
Dhooge
,
I. J. M.
,
2012
, “
A Pilot Cost-of-Illness Study on Long-Term Complications/Sequelae of AOM
,”
B-ENT
,
8
(
3
), p.
153
.
18.
Kozin
,
E. D.
,
Black
,
N. L.
,
Cheng
,
J. T.
,
Cotler
,
M. J.
,
McKenna
,
M. J.
,
Lee
,
D. J.
, and
Remenschneider
,
A. K.
,
2016
, “
Design, Fabrication, and in Vitro Testing of Novel Three-Dimensionally Printed Tympanic Membrane Grafts
,”
Hear. Res.
,
340
, pp.
191
203
.
19.
Luginbuehl
,
V.
,
Wenk
,
E.
,
Koch
,
A.
,
Gander
,
B.
,
Merkle
,
H. P.
, and
Meinel
,
L.
,
2005
, “
Insulin-Like Growth Factor I-Releasing Alginate-Tricalciumphosphate Composites for Bone Regeneration
,”
Pharm. Res.
,
22
(
6
), pp.
940
950
.
20.
Hott
,
M. E.
,
Megerian
,
C. A.
,
Beane
,
R.
, and
Bonassar
,
L. J.
,
2004
, “
Fabrication of Tissue Engineered Tympanic Membrane Patches Using Computer-Aided Design and Injection Molding
,”
Laryngoscope
,
114
(
7
), pp.
1290
1295
.
21.
Weber
,
D. E.
,
Semaan
,
M. T.
,
Wasman
,
J. K.
,
Beane
,
R.
,
Bonassar
,
L. J.
, and
Megerian
,
C. A.
,
2006
, “
Tissue-engineered Calcium Alginate Patches in the Repair of Chronic Chinchilla Tympanic Membrane Perforations
,”
Laryngoscope
,
116
(
5
), pp.
700
704
.
22.
Hong
,
P.
,
Bance
,
M.
, and
Gratzer
,
P. F.
,
2013
, “
Repair of Tympanic Membrane Perforation Using Novel Adjuvant Therapies: a Contemporary Review of Experimental and Tissue Engineering Studies
,”
Int. J. Pediatr. Otorhinolaryngol.
,
77
(
1
), pp.
3
12
.
23.
Jin
,
Y.
,
Chai
,
W.
, and
Huang
,
Y.
,
2018
, “
Fabrication of Stand-Alone Cell-Laden Collagen Vascular Network Scaffolds Using Fugitive Pattern-Based Printing-Then-Casting Approach
,”
ACS Appl. Mater. Interfaces
,
10
(
34
), pp.
28361
28371
.
24.
Cheng
,
T.
,
Dai
,
C.
, and
Gan
,
R. Z.
,
2007
, “
Viscoelastic Properties of Human Tympanic Membrane
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
305
314
.
25.
Loizou
,
E.
,
Butler
,
P.
,
Porcar
,
L.
,
Kesselman
,
E.
,
Talmon
,
Y.
,
Dundigalla
,
A.
, and
Schmidt
,
G.
,
2005
, “
Large Scale Structures in Nanocomposite Hydrogels
,”
Macromolecules
,
38
(
6
), pp.
2047
2049
.
26.
Bauer
,
D.
,
Alt
,
M.
,
Dirks
,
M.
,
Buch
,
A.
,
Heilingloh
,
C. S.
,
Dittmer
,
U.
, and
Eis-Hübinger
,
A. M.
,
2017
, “
A Therapeutic Antiviral Antibody Inhibits the Anterograde Directed Neuron-to-Cell Spread of Herpes Simplex Virus and Protects Against Ocular Disease
,”
Front. Microbiol.
,
8
, p.
2115
.
27.
Johnson
,
B. N.
,
Lancaster
,
K. Z.
,
Hogue
,
I. B.
,
Meng
,
F.
,
Kong
,
Y. L.
,
Enquist
,
L. W.
, and
McAlpine
,
M. C.
,
2016
, “
3D Printed Nervous System on a Chip
,”
Lab Chip
,
16
(
8
), pp.
1393
1400
.
28.
Santhanam
,
N.
,
Kumanchik
,
L.
,
Guo
,
X.
,
Sommerhage
,
F.
,
Cai
,
Y.
,
Jackson
,
M.
,
Martin
,
C.
,
Saad
,
G.
,
McAleer
,
C. W.
,
Wang
,
Y.
,
Lavado
,
A.
,
Long
,
C. J.
, and
Hickman
,
J. J.
,
2018
, “
Stem Cell Derived Phenotypic Human Neuromuscular Junction Model for Dose Response Evaluation of Therapeutics
,”
Biomaterials
,
166
, pp.
64
78
.
29.
Freundt
,
E. C.
,
Maynard
,
N.
,
Clancy
,
E. K.
,
Roy
,
S.
,
Bousset
,
L.
,
Sourigues
,
Y.
, and
Brahic
,
M.
,
2012
, “
Neuron-to-neuron Transmission of α-Synuclein Fibrils Through Axonal Transport
,”
Ann. Neurol.
,
72
(
4
), pp.
517
524
.
30.
Baghdadi
,
H. A.
,
Sardinha
,
H.
, and
Bhatia
,
S. R.
,
2005
, “
Rheology and Gelation Kinetics in Laponite Dispersions Containing Poly (Ethylene Oxide)
,”
J. Polym. Sci. Part B: Polym. Phys.
,
43
(
2
), pp.
233
240
.
31.
Jin
,
Y.
,
Chai
,
W.
, and
Huang
,
Y.
,
2017
, “
Printability Study of Hydrogel Solution Extrusion in Nanoclay Yield-Stress Bath During Printing-Then-Gelation Biofabrication
,”
Mater. Sci. Eng. C
,
80
, pp.
313
325
.
32.
Muth
,
J. T.
,
Vogt
,
D. M.
,
Truby
,
R. L.
,
Mengüç
,
Y.
,
Kolesky
,
D. B.
,
Wood
,
R. J.
, and
Lewis
,
J. A.
,
2014
, “
Embedded 3D Printing of Strain Sensors Within Highly Stretchable Elastomers
,”
Adv. Mater.
,
26
(
36
), pp.
6307
6312
.
33.
Wu
,
C. J.
,
Gaharwar
,
A. K.
,
Chan
,
B. K.
, and
Schmidt
,
G.
,
2011
, “
Mechanically Tough Pluronic F127/Laponite Nanocomposite Hydrogels From Covalently and Physically Cross-Linked Networks
,”
Macromolecules
,
44
(
20
), pp.
8215
8224
.
You do not currently have access to this content.