Abstract

Modeling the variation propagation based on the stream of variation (SoV) methodology for multistage machining processes (MMPs) has been investigated intensively in the past two decades; however, little research is conducted on the variation reduction and the existing work fails to be applied to irregular features caused by the machining-induced variation varying with the positions of the contour points on the machined surface. This paper proposes a novel error compensation method for MMPs by modifying the tool path to reduce variation for general features. The method based on differential motion vector (DMV) sets of multiple contour points is presented to represent the deviation of the irregular feature. Then, the conventional stream of variation (SoV) model is further extended to more accurately describe variation propagation for irregular features considering the actual datum-induced variations and the varying machining-induced variations, especially the deformation errors for the low stiffness workpiece. Based on the extended SoV model and error equivalence mechanism, the datum error and fixture error are transformed to the equivalent tool path error. Then, the original tool path is modified through shifting the machine zero points of machine tools with no need for changing the original G code and workpiece setup. A real cutting experiment validates the effectiveness of the proposed error compensation method for MMPs with an average precision improvement of over 60%. The application of the extended SoV model significantly contributes to compensating more complex error sources for MMPs, such as the clamp force, the internal residual stress, etc.

References

1.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2000
, “
Error Compensation in Machine Tools—A Review Part I: Geometric, Cutting-Force Induced and Fixture-Dependent Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1235
1256
. 10.1016/S0890-6955(00)00009-2
2.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2000
, “
Error Compensation in Machine Tools—A Review Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1257
1284
. 10.1016/S0890-6955(00)00010-9
3.
Shi
,
J.
,
2007
,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
4.
Hu
,
S. J.
, and
Koren
,
Y.
,
1997
, “
Stream-of-variation Theory for Automotive Body Assembly
,”
CIRP Ann.
,
46
(
1
), pp.
1
6
. 10.1016/s0007-8506(07)60763-x
5.
Huang
,
Q.
,
Shi
,
J.
, and
Yuan
,
J.
,
2003
, “
Part Dimensional Error and Its Propagation Modeling in Multi-operational Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
255
262
. 10.1115/1.1532007
6.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2003
, “
Dimensional Errors of Fixtures, Locating and Measurement Datum Features in the Stream of Variation Modeling in Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
716
730
. 10.1115/1.1621424
7.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
,
2003
, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors
,”
IEEE Trans. Rob. Autom.
,
19
(
2
), pp.
296
309
. 10.1109/tra.2003.808852
8.
Loose
,
J.-P.
,
Zhou
,
Q.
,
Zhou
,
S.
, and
Ceglarek
,
D.
,
2010
, “
Integrating GD&T Into Dimensional Variation Models for Multistage Machining Processes
,”
Int. J. Prod. Res.
,
48
(
11
), pp.
3129
3149
. 10.1080/00207540802691366
9.
Du
,
S.
,
Yao
,
X.
,
Huang
,
D.
, and
Wang
,
M.
,
2015
, “
Three-Dimensional Variation Propagation Modeling for Multistage Turning Process of Rotary Workpieces
,”
Comput. Ind. Eng.
,
82
, pp.
41
53
. 10.1016/j.cie.2015.01.010
10.
Loose
,
J.-P.
,
Zhou
,
S.
, and
Ceglarek
,
D.
,
2007
, “
Kinematic Analysis of Dimensional Variation Propagation for Multistage Machining Processes With General Fixture Layouts
,”
IEEE Trans. Autom. Sci. Eng.
,
4
(
2
), pp.
141
152
. 10.1109/tase.2006.877393
11.
Abellán
,
J. V.
, and
Liu
,
J.
,
2013
, “
Variation Propagation Modelling for Multi-Station Machining Processes With Fixtures Based on Locating Surfaces
,”
Int. J. Prod. Res.
,
51
(
15
), pp.
4667
4681
. 10.1080/00207543.2013.784409
12.
Abellan-Nebot
,
J. V.
,
Liu
,
J.
,
Subiron
,
F. R.
, and
Shi
,
J.
,
2012
, “
State Space Modeling of Variation Propagation in Multistation Machining Processes Considering Machining-Induced Variations
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021002
. 10.1115/1.4005790
13.
Yang
,
F.
,
Jin
,
S.
, and
Li
,
Z.
,
2017
, “
A Modification of DMVs Based State Space Model of Variation Propagation for Multistage Machining Processes
,”
Assembly Autom.
,
37
(
4
), pp.
381
390
. 10.1108/aa-06-2016-052
14.
Abellán-Nebot
,
J. V.
,
Liu
,
J.
, and
Subirón
,
F. R.
,
2013
, “
Process-Oriented Tolerancing Using the Extended Stream of Variation Model
,”
Comput. Ind.
,
64
(
5
), pp.
485
498
. 10.1016/j.compind.2013.02.005
15.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2007
, “
Online Stochastic Control of Dimensional Quality in Multistation Manufacturing Systems
,”
P. I. Mech. Eng. Part B: J. Eng. Manuf.
,
221
(
5
), pp.
865
880
. 10.1243/09544054jem458
16.
Abellan-Nebot
,
J. V.
,
Liu
,
J.
, and
Romero Subirón
,
F.
,
2012
, “
Quality Prediction and Compensation in Multi-station Machining Processes Using Sensor-Based Fixtures
,”
Robot. Cim-Int. Manuf.
,
28
(
2
), pp.
208
219
. 10.1016/j.rcim.2011.09.001
17.
Wang
,
H.
, and
Huang
,
Q.
,
2006
, “
Error Cancellation Modeling and Its Application to Machining Process Control
,”
IIE Trans.
,
38
(
4
), pp.
355
364
. 10.1080/07408170500333392
18.
Wang
,
H.
,
Huang
,
Q.
, and
Katz
,
R.
,
2005
, “
Multi-operational Machining Processes Modeling for Sequential Root Cause Identification and Measurement Reduction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
512
521
. 10.1115/1.1948403
19.
Yang
,
F.
,
Jin
,
S.
,
Li
,
Z.
,
Ding
,
S.
, and
Ma
,
X.
,
2017
, “
A New Error Compensation Model for Machining Process Based on Differential Motion Vectors
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2943
2954
. 10.1007/s00170-017-0652-z
20.
Du
,
Z.
,
Zhang
,
D.
,
Hou
,
H.
, and
Liang
,
S. Y.
,
2016
, “
Peripheral Milling Force Induced Error Compensation Using Analytical Force Model and APDL Deformation Calculation
,”
Int. J. Adv. Manuf. Technol.
,
88
(
9–12
), pp.
3405
3417
. 10.1007/s00170-016-9052-z
21.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
McGraw-Hill Book Co.
,
New York
.
22.
Nguyen
,
T.-K.
,
Nguyen
,
N.-D.
,
Vo
,
T. P.
, and
Thai
,
H.-T.
,
2017
, “
Trigonometric-Series Solution for Analysis of Laminated Composite Beams
,”
Compos. Struct.
,
160
, pp.
142
151
. 10.1016/j.compstruct.2016.10.033
23.
Fazzolari
,
F. A.
,
2018
, “
Generalized Exponential, Polynomial and Trigonometric Theories for Vibration and Stability Analysis of Porous FG Sandwich Beams Resting on Elastic Foundations
,”
Composites, Part B
,
136
, pp.
254
271
. 10.1016/j.compositesb.2017.10.022
24.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2016
, “
Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081005
. 10.1115/1.4032393
25.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
. 10.1115/1.4042019
26.
Cerutti
,
X.
, and
Mocellin
,
K.
,
2014
, “
Parallel Finite Element Tool to Predict Distortion Induced by Initial Residual Stresses During Machining of Aeronautical Parts
,”
Int. J. Mater. Form.
,
8
(
2
), pp.
255
268
. 10.1007/s12289-014-1164-0
27.
Li
,
H.
,
Zhang
,
P.
,
Deng
,
M.
,
Xiang
,
S.
,
Du
,
Z.
, and
Yang
,
J.
,
2020
, “
Volumetric Error Measurement and Compensation of Three-Axis Machine Tools Based on Laser Bidirectional Sequential Step Diagonal Measuring Method
,”
Meas. Sci. Technol.
,
31
(
5
), p.
055201
. 10.1088/1361-6501/ab56b1
You do not currently have access to this content.