Abstract

During micro-milling aluminum alloy LF21 process, it tends to produce large top burr usually detected at the top of slot walls. Therefore, the machining accuracy and quality of the micro-parts are difficult to satisfy. To suppress burr and achieve the higher machining quality of machined LF21 micro-parts, this paper using the Johnson–Cook constitutive model establishes a two-dimensional finite element simulation model to obtain a better recognition of burr formation mechanisms and a three-dimensional finite element simulation model to better simulate burr formation process and measure top burr height. Furthermore, effective validation experiments for the proposed models are conducted, good agreements are achieved in the cutting force and top burr height between the experiments and simulation results. The study explores the formation mechanism of top burr in micro-milling LF21 and reveals the influence law of cutting parameters on top burr height based on the simulation and experimental results. The research guides the selection of cutting parameters in micro-milling LF21 process.

References

1.
Pratim
,
S. P.
, and
Das
,
S.
,
2011
, “
Burr Minimization in Face Milling: An Edge Beveling Approach
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
225
(
9
), pp.
1528
1534
.
2.
Park
,
I. W.
, and
Dornfeld
,
D. A.
,
2000
, “
A Study of Burr Formation Processes Using the Finite Element Method: Part I
,”
J. Eng. Mater.-T ASME
,
122
(
2
), pp.
221
228
. 10.1115/1.482791
3.
Park
,
I. W.
, and
Dornfeld
,
D. A.
,
2000
, “
A Study of Burr Formation Processes Using the Finite Element Method: Part II—The Influences of Exit Angle, Rake Angle, and Backup Material on Burr Formation Processes
,”
J. Eng. Mater.-T ASME
,
122
(
2
), pp.
229
237
. 10.1115/1.482792
4.
Chen
,
M. J.
,
Ni
,
H. B.
,
Wang
,
Z. J.
, and
Jiang
,
Y.
,
2012
, “
Research on the Modeling of Burr Formation Process in Micro-Ball End Milling Operation on Ti–6Al–4V
,”
Int. J. Adv. Manuf. Tech.
,
62
(
9–12
), pp.
901
912
. 10.1007/s00170-011-3865-6
5.
Yang
,
K.
,
Bai
,
Q. S.
,
Yu
,
F. L.
, and
Liang
,
Y. C.
,
2010
, “
Modelling and Experimental Analysis of the Mechanism of Micro-Burr Formation in Micro-End-Milling Process
,”
Nanotechn. Precis. Eng.
,
8
(
1
), pp.
75
83
.
6.
Wan
,
Z.
,
Li
,
Y.
,
Tang
,
H.
,
Deng
,
W.
, and
Tang
,
Y.
,
2014
, “
Characteristics and Mechanism of Top Burr Formation in Slotting Microchannels Using Arrayed Thin Slotting Cutters
,”
Precis. Eng.
,
38
(
1
), pp.
28
35
. 10.1016/j.precisioneng.2013.06.008
7.
Özel
,
T.
,
Olleak
,
A.
, and
Thepsonthi
,
T.
,
2017
, “
Micro Milling of Titanium Alloy Ti-6Al-4V: 3-D Finite Element Modeling for Prediction of Chip Flow and Burr Formation
,”
Prod. Eng.
,
11
(
4–5
), pp.
435
444
. 10.1007/s11740-017-0761-4
8.
Özel
,
T.
,
Thepsonthi
,
T.
,
Ulutan
,
D.
, and
Kaftanoğlu
,
B.
,
2011
, “
Experiments and Finite Element Simulations on Micro-Milling of Ti-6Al-4V Alloy With Uncoated and cBN Coated Micro-Tools
,”
CIRP Ann.-Manuf. Techn.
,
60
(
1
), pp.
85
88
. 10.1016/j.cirp.2011.03.087
9.
Yadav
,
A. K.
,
Kumar
,
M.
,
Bajpai
,
V.
,
Singh
,
N. K.
, and
Singh
,
R. K.
,
2017
, “
FE Modeling of Burr Size in High-Speed Micro-Milling of Ti6Al4V
,”
Precis. Eng.
,
49
, pp.
287
292
. 10.1016/j.precisioneng.2017.02.017
10.
Wu
,
X.
,
Li
,
L.
, and
He
,
N.
,
2017
, “
Investigation on the Burr Formation Mechanism in Micro Cutting
,”
Precis. Eng.
,
47
, pp.
191
196
. 10.1016/j.precisioneng.2016.08.004
11.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
541
548
.
12.
Xu
,
Z. D.
,
Cui
,
J. J.
,
Yu
,
H. P.
, and
Li
,
C. F.
,
2013
, “
Constitutive Relationship of 3A21 Aluminium Alloy Tube for Magnetic Pulse Forming
,”
Appl. Mech. Mater.
,
239–240
, pp.
314
319
. 10.4028/www.scientific.net/amm.239-240.314
13.
Shuhui
,
Z.
,
Yuli
,
L.
,
Huawen
,
S.
, and
He
,
Y.
,
2013
, “
Distribution of Wall Thickness and Damage of Rectangular Tube With Different Fillet in Bending Process
,”
J. Aeronaut. Mater.
,
33
(
33
), pp.
66
73
.
14.
Williams
,
J.
,
1975
, “
Observations of Deformation Occurring in the Cutting Process Related to a Three Zone Model of Machining
,”
Proceedings of 3rd North American Metalworking Research Conference
,
Pittsburgh, PA
,
Carnegie Press
,
1975
, pp.
632
647
.
15.
Xie
,
W. K.
, and
Fang
,
F. Z.
,
2020
, “
On the Mechanism of Dislocation Dominated Chip Formation in Cutting Based Single Atomic Layer Removal of Monocrystalline Copper
,”
Int. J. Adv. Manuf. Technol.
,
108
(
5–6
), pp.
1587
1599
. 10.1007/s00170-020-05527-z
16.
Lai
,
X. M.
,
Li
,
H. T.
,
Li
,
C. F.
,
Lin
,
Z. Q.
, and
Ni
,
J.
,
2008
, “
Modelling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
. 10.1016/j.ijmachtools.2007.08.011
17.
Boswell
,
B.
,
Islam
,
M. N.
, and
Davies
,
I. J.
,
2018
, “
A Review of Micro-mechanical Cutting
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
789
806
. 10.1007/s00170-017-0912-y
18.
Shen
,
Q. X.
,
Wang
,
G. C.
,
Zhu
,
Y. M.
, and
Qu
,
H. J.
,
2009
, “
The Forecast or Prediction of Burrs in Metal Cutting
,”
Mach. Des. Manuf.
,
1
, pp.
237
239
. In Chinese.
19.
Guicheng
,
W.
,
2000
, “
Study on Formation Mechanism of Negative Shear in Metal Cutting
,”
Proceedings of the 4th International Conference on Frontiers of Design and Manufacturing
,
Dalian
,
July 2002
.
20.
Hassanpour
,
H.
,
Sadeghi
,
M. H.
,
Rezaei
,
H.
, and
Rasti
,
A.
,
2016
, “
Experimental Study of Cutting Force, Microhardness, Surface Roughness, and Burr Size on Micromilling of Ti6Al4V in Minimum Quantity Lubrication
,”
Mater. Manuf. Process.
,
31
(
13
), pp.
1654
1662
. 10.1080/10426914.2015.1117629
You do not currently have access to this content.