Abstract

An experimental study was conducted to study the effects of geometric size and surface treatment on the fatigue life of fused filament fabrication (FFF) manufactured acrylonitrile butadiene styrene (ABS) parts. Moore rotating-beam fatigue tests were conducted with four different levels of loadings to obtain the S–N curves. Two different sizes (control size and large size) and three different surface treatment methods (as-printed, acetone-treated, and sandpaper polished) were studied. The larger specimens had significantly decreased fatigue life because of a larger volume, and hence a greater probability of defects for crack initiation and propagation, as compared with the control specimen. The acetone-treated specimen had a smooth surface. Its fatigue life, however, decreased significantly because the acetone treatment caused internal damage that weakened the specimen and was reported for the first time. The sandpaper polished specimen also had a smooth surface, but its effect on the fatigue life was insignificant because the extruded filament direction on the specimen surface was parallel to the loading direction. The present results lead to a better understanding of the effects of geometric size and surface treatment on the fatigue performance of FFF specimens. The study also provides important insights for the design of part size and surface treatment of three-dimensional (3D) printed plastic components for fatigue loading end-use applications.

References

1.
Safai
,
L.
,
Cuellar
,
J. S.
,
Smit
,
G.
, and
Zadpoor
,
A. A.
,
2019
, “
A Review of the Fatigue Behavior of 3D Printed Polymers
,”
Addit. Manuf.
,
28
, pp.
87
97
. 10.1016/j.addma.2019.03.023
2.
Cuan-Urquizo
,
E.
,
Barocio
,
E.
,
Tejada-Ortigoza
,
V.
,
Pipes
,
R. B.
,
Rodriguez
,
C. A.
, and
Roman-Flores
,
A.
,
2019
, “
Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches
,”
Materials
,
12
(
6
),
895
. 10.3390/ma12060895
3.
Ai
,
Y.
,
Zhu
,
S. P.
,
Liao
,
D.
,
Correia
,
J. A. F. O.
,
Souto
,
C.
,
De Jesus
,
A. M. P.
, and
Keshtegar
,
B.
,
2019
, “
Probabilistic Modeling of Fatigue Life Distribution and Size Effect of Components With Random Defects
,”
Int. J. Fatigue
,
126
, pp.
165
173
. 10.1016/j.ijfatigue.2019.05.005
4.
Carpinteri
,
A.
,
Spagnoli
,
A.
, and
Vantadori
,
S.
,
2009
, “
Size Effect in S-N Curves: A Fractal Approach to Finite-Life Fatigue Strength
,”
Int. J. Fatigue
,
31
(
5
), pp.
927
933
. 10.1016/j.ijfatigue.2008.10.001
5.
El Khoukhi
,
D.
,
Morel
,
F.
,
Saintier
,
N.
,
Bellett
,
D.
,
Osmond
,
P.
,
Le
,
V. D.
, and
Adrien
,
J.
,
2019
, “
Experimental Investigation of the Size Effect in High Cycle Fatigue: Role of the Defect Population in Cast Aluminium Alloys
,”
Int. J. Fatigue
,
129
, p.
105222
. 10.1016/j.ijfatigue.2019.105222
6.
Kloos
,
K. H.
,
Buch
,
A.
, and
Zankov
,
D.
,
1981
, “
Pure Geometrical Size Effect in Fatigue Tests With Constant Stress Amplitude and in Programme Tests
,”
Materialwiss. Werkstofftech.
,
12
(
2
), pp.
40
50
. 10.1002/mawe.19810120205
7.
Phillips
,
C. E.
, and
Heywood
,
R. B.
,
1951
, “
The Size Effect in Fatigue of Plain and Notched Steel Specimens Loaded Under Reversed Direct Stress
,”
Proc. Inst. Mech. Eng., Part E
,
165
(
1
), pp.
113
124
. 10.1243/PIME_PROC_1951_165_014_02
8.
Shirani
,
M.
, and
Härkegård
,
G.
,
2011
, “
Fatigue Life Distribution and Size Effect in Ductile Cast Iron for Wind Turbine Components
,”
Eng. Failure Anal.
,
18
(
1
), pp.
12
24
. 10.1016/j.engfailanal.2010.07.001
9.
Zhu
,
S. P.
,
Foletti
,
S.
, and
Beretta
,
S.
,
2018
, “
Evaluation of Size Effect on Strain-Controlled Fatigue Behavior of a Quench and Tempered Rotor Steel: Experimental and Numerical Study
,”
Mater. Sci. Eng., A
,
735
, pp.
423
435
. 10.1016/j.msea.2018.08.073
10.
Zdenek
,
P. B.
, and
Kangminh
,
X.
,
1991
, “
Size Effect in Fatigue Fracture of Concrete
,”
ACI Mater. J.
,
88
(
4
), pp.
390
399
. 10.14359/1786
11.
Neff
,
C.
,
Trapuzzano
,
M.
, and
Crane
,
N. B.
,
2018
, “
Impact of Vapor Polishing on Surface Quality and Mechanical Properties of Extruded ABS
,”
Rapid Prototyp. J.
,
24
(
2
), pp.
501
508
. 10.1108/RPJ-03-2017-0039
12.
Gao
,
H.
,
Kaweesa
,
D. V.
,
Moore
,
J.
, and
Meisel
,
N. A.
,
2017
, “
Investigating the Impact of Acetone Vapor Smoothing on the Strength and Elongation of Printed ABS Parts
,”
JOM
,
69
(
3
), pp.
580
585
. 10.1007/s11837-016-2214-5
13.
Mu
,
M.
,
Ou
,
C. Y.
,
Wang
,
J.
, and
Liu
,
Y.
,
2020
, “
Surface Modification of Prototypes in Fused Filament Fabrication Using Chemical Vapour Smoothing
,”
Addit. Manuf.
,
31
, p.
100972
. 10.1016/j.addma.2019.100972
14.
Singh
,
R.
,
Singh
,
S.
,
Singh
,
I. P.
,
Fabbrocino
,
F.
, and
Fraternali
,
F.
,
2017
, “
Investigation for Surface Finish Improvement of FDM Parts by Vapor Smoothing Process
,”
Composites, Part B
,
111
, pp.
228
234
. 10.1016/j.compositesb.2016.11.062
15.
Fischer
,
M.
, and
Schöppner
,
V.
,
2017
, “
Fatigue Behavior of FDM Parts Manufactured With Ultem 9085
,”
JOM
,
69
(
3
), pp.
563
568
. 10.1007/s11837-016-2197-2
16.
Kim
,
J.
, and
Kang
,
B. S.
,
2018
, “
Optimization of Design Process of Fused Filament Fabrication (FFF) 3D Printing
,”
ASME Int. Mech. Eng. Congr. Expo. Proc.
,
2
, pp.
1
8
. 10.1115/IMECE2018-87916
17.
de León
,
A. S.
,
Domínguez-Calvo
,
A.
, and
Molina
,
S. I.
,
2019
, “
Materials With Enhanced Adhesive Properties Based on Acrylonitrile-Butadiene-Styrene (ABS)/Thermoplastic Polyurethane (TPU) Blends for Fused Filament Fabrication (FFF)
,”
Mater. Des.
,
182
, p.
108044
. 10.1016/j.matdes.2019.108044
18.
Mazzei Capote
,
G. A.
,
Redmann
,
A.
, and
Osswald
,
T. A.
,
2019
, “
Validating a Failure Surface Developed for ABS Fused Filament Fabrication Parts Through Complex Loading Experiments
,”
J. Compos. Sci.
,
3
(
2
),
49
. 10.3390/jcs3020049
19.
Frascio
,
M.
,
Avalle
,
M.
,
Monti
,
M.
,
Rabbi
,
M. F.
,
Chalivendra
,
V. B.
, and
Li
,
D.
,
2019
, “
The Effect of Raster Orientation on the Static and Fatigue Properties of Filament Deposited ABS Polymer
,”
ASME Int. Mech. Eng. Congr. Expo. Proc.
,
124
, pp.
1
16
.
20.
Domingo-Espin
,
M.
,
Travieso-Rodriguez
,
J. A.
,
Jerez-Mesa
,
R.
, and
Lluma-Fuentes
,
J.
,
2018
, “
Fatigue Performance of ABS Specimens Obtained by Fused Filament Fabrication
,”
Materials
,
11
(
12
), pp.
1
16
. 10.3390/ma11122521
21.
Rajpurohit
,
S. R.
, and
Dave
,
H. K.
,
2018
, “
Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Polyactic Acid
,”
Int. J. Mater. Met. Eng.
,
12
(
2
), pp.
52
57
. 10.5281/zenodo.1315655
22.
Frascio
,
M.
,
Avalle
,
M.
, and
Monti
,
M.
,
2018
, “
Fatigue Strength of Plastics Components Made in Additive Manufacturing: First Experimental Results
,”
Proc. Struct. Integr.
,
12
, pp.
32
43
. 10.1016/j.prostr.2018.11.109
23.
Lee
,
J.
, and
Huang
,
A.
,
2013
, “
Fatigue Analysis of FDM Materials
,”
Rapid Prototyp. J.
,
19
(
4
), pp.
291
299
. 10.1108/13552541311323290
24.
Rabbi
,
M. F.
,
Chalivendra
,
V. B.
, and
Li
,
D.
,
2019
, “
A Novel Approach to Increase Dynamic Fracture Toughness of Additively Manufactured Polymer
,”
Exp. Mech.
,
59
(
6
), pp.
899
911
. 10.1007/s11340-019-00486-3
25.
Afrose
,
M. F.
,
Masood
,
S. H.
,
Iovenitti
,
P.
,
Nikzad
,
M.
, and
Sbarski
,
I.
,
2016
, “
Effects of Part Build Orientations on Fatigue Behaviour of FDM-Processed PLA Material
,”
Prog. Addit. Manuf.
,
1
(
1–2
), pp.
21
28
. 10.1007/s40964-015-0002-3
26.
Zhang
,
H.
,
Cai
,
L.
,
Golub
,
M.
,
Zhang
,
Y.
,
Yang
,
X.
,
Schlarman
,
K.
, and
Zhang
,
J.
,
2018
, “
Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene
,”
J. Mater. Eng. Perform.
,
27
(
1
), pp.
57
62
. 10.1007/s11665-017-2961-7
27.
Puigoriol-Forcada
,
J. M.
,
Alsina
,
A.
,
Salazar-Martín
,
A. G.
,
Gomez-Gras
,
G.
, and
Pérez
,
M. A.
,
2018
, “
Flexural Fatigue Properties of Polycarbonate Fused-Deposition Modelling Specimens
,”
Mater. Des.
,
155
, pp.
414
421
. 10.1016/j.matdes.2018.06.018
28.
Ziemian
,
S.
,
Okwara
,
M.
, and
Ziemian
,
C. W.
,
2015
, “
Tensile and Fatigue Behavior of Layered Acrylonitrile Butadiene Styrene
,”
Rapid Prototyp. J.
,
21
(
3
), pp.
270
278
. 10.1108/RPJ-09-2013-0086
29.
Ziemian
,
C. W.
,
Ziemian
,
R. D.
, and
Haile K
,
V.
,
2016
, “
Characterization of Stiffness Degradation Caused by Fatigue Damage of Additive Manufactured Parts
,”
Mater. Des.
,
109
, pp.
209
218
. 10.1016/j.matdes.2016.07.080
30.
Hayes
,
M. D.
,
Edwards
,
D. B.
, and
Shah
,
A. R.
,
2015
, “Fractography Basics,”
Fractography in Failure Analysis of Polymers
,
S.
Ebnesajjad
, ed.,
Elsevier
,
New York
, pp.
48
92
.
You do not currently have access to this content.