Abstract

This paper reports a study on the effects of particle size distribution (tuned by mixing different-sized powders) on density of a densely packed powder, powder bed density, and sintered density in binder jetting additive manufacturing. An analytical model was used first to study the mixture packing density. Analytical results showed that multimodal (bimodal or trimodal) mixtures could achieve a higher packing density than their component powders and there existed an optimal mixing fraction to achieve the maximum mixture packing density. Both a lower component particle size ratio (fine to coarse) and a larger component packing density ratio (fine to coarse) led to a larger maximum mixture packing density. A threshold existed for the component packing density ratio, below which the mixing method was not effective for density improvement. Its relationship to the component particle size ratio was calculated and plotted. In addition, the dependence of the optimal mixing fraction and maximum mixture packing density on the component particle size ratio and component packing density ratio was calculated and plotted. These plots can be used as theoretical tools to select parameters for the mixing method. Experimental results of tap density were consistent with the above-mentioned analytical predictions. Also, experimental measurements showed that powders with multimodal particle size distributions achieved a higher tap density, powder bed density, and sintered density in most cases.

References

1.
ASTM International
,
2015
, “
ISO/ASTM 52900:2015—Additive Manufacturing—General Principles—Terminology
.”
2.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
. 10.1016/j.addma.2019.05.031
3.
Du
,
W.
,
Ren
,
X.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
040801
. 10.1115/1.4046248
4.
Li
,
M.
,
Du
,
W.
,
Elwany
,
A.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Metal Binder Jetting Additive Manufacturing: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
090801
. 10.1115/1.4047430
5.
Ma
,
C.
,
Pei
,
Z.
,
Ren
,
X.
, and
Du
,
W.
,
2019
, “
Hierarchical Compositions for the Additive Manufacturing of Materials
,”
US Patent US20190111585A1
.
6.
Miao
,
G.
,
Du
,
W.
,
Moghadasi
,
M.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: Effects of Granulation on Properties of Feedstock Powder and Printed and Sintered Parts
,”
Addit. Manuf.
,
36
, pp.
101542-1
101542-8
. 10.1016/j.addma.2020.101542
7.
Zocca
,
A.
,
Colombo
,
P.
,
Gomes
,
C. M.
,
Günster
,
J.
, and
Green
,
D. J.
,
2015
, “
Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities
,”
J. Am. Ceram. Soc.
,
98
(
7
), pp.
1983
2001
. 10.1111/jace.13700
8.
ExOne|Binder Jetting Technology
” [Online], https://www.exone.com/en-US/case-studies/what-is-binder-jetting, Accessed September 21, 2019.
9.
Sachs
,
E.
,
Cima
,
M.
, and
Cornie
,
J.
,
1990
, “
Three-Dimensional Printing: Rapid Tooling and Prototypes Directly From a CAD Model
,”
CIRP Ann. Manuf. Technol.
,
39
(
1
), pp.
201
204
. 10.1016/S0007-8506(07)61035-X
10.
Sachs
,
E.
,
Cima
,
M.
,
Williams
,
P.
,
Brancazio
,
D.
, and
Cornie
,
J.
,
1992
, “
Three Dimensional Printing: Rapid Tooling and Prototypes Directly From a CAD Model
,”
ASME J. Eng. Ind.
,
114
(
4
), pp.
481
488
. 10.1115/1.2900701
11.
Díaz-Moreno
,
C. A.
,
Lin
,
Y.
,
Hurtado-Macías
,
A.
,
Espalin
,
D.
,
Terrazas
,
C. A.
,
Murr
,
L. E.
, and
Wicker
,
R. B.
,
2019
, “
Binder Jetting Additive Manufacturing of Aluminum Nitride Components
,”
Ceram. Int.
,
45
(
11
), pp.
13620
13627
. 10.1016/j.ceramint.2019.03.187
12.
Maleksaeedi
,
S.
,
Eng
,
H.
,
Wiria
,
F. E.
,
Ha
,
T. M. H.
, and
He
,
Z.
,
2014
, “
Property Enhancement of 3D-Printed Alumina Ceramics Using Vacuum Infiltration
,”
J. Mater. Process. Technol.
,
214
(
7
), pp.
1301
1306
. 10.1016/j.jmatprotec.2014.01.019
13.
Du
,
W.
,
Ren
,
X.
,
Ma
,
C.
, and
Pei
,
Z.
,
2019
, “
Ceramic Binder Jetting Additive Manufacturing: Particle Coating for Increasing Powder Sinterability and Part Strength
,”
Mater. Lett.
,
234
, pp.
327
330
. 10.1016/j.matlet.2018.09.118
14.
Miyanaji
,
H.
,
Zhang
,
S.
,
Lassell
,
A.
,
Zandinejad
,
A. A.
, and
Yang
,
L.
,
2016
, “
Optimal Process Parameters for 3D Printing of Porcelain Structures
,”
Procedia Manuf.
,
5
, pp.
870
887
. 10.1016/j.promfg.2016.08.074
15.
Butscher
,
A.
,
Bohner
,
M.
,
Doebelin
,
N.
,
Galea
,
L.
,
Loeffel
,
O.
, and
Müller
,
R.
,
2013
, “
Moisture Based Three-Dimensional Printing of Calcium Phosphate Structures for Scaffold Engineering
,”
Acta Biomater.
,
9
(
2
), pp.
5369
5378
. 10.1016/j.actbio.2012.10.009
16.
Vorndran
,
E.
,
Moseke
,
C.
, and
Gbureck
,
U.
,
2015
, “
3D Printing of Ceramic Implants
,”
MRS Bull.
,
40
(
2
), pp.
127
136
. 10.1557/mrs.2015.326
17.
Moghadasi
,
M.
,
Du
,
W.
,
Li
,
M.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: Effects of Particle Size on Feedstock Powder and Final Part Properties
,”
Ceram. Int.
,
46
(
10
), pp.
16966
16972
. 10.1016/j.ceramint.2020.03.280
18.
Sun
,
C.
,
Tian
,
X.
,
Wang
,
L.
,
Liu
,
Y.
,
Wirth
,
C. M.
,
Günster
,
J.
,
Li
,
D.
, and
Jin
,
Z.
,
2017
, “
Effect of Particle Size Gradation on the Performance of Glass-Ceramic 3D Printing Process
,”
Ceram. Int.
,
43
(
1
), pp.
578
584
. 10.1016/j.ceramint.2016.09.197
19.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2017
, “
Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals
,”
ASME J. Mater. Sci. Eng.
,
139
(
8
), p.
081019
. 10.1115/1.4036640
20.
Kwan
,
A. K. H.
,
Wong
,
V.
, and
Fung
,
W. W. S.
,
2015
, “
A 3-Parameter Packing Density Model for Angular Rock Aggregate Particles
,”
Powder Technol.
,
274
, pp.
154
162
. 10.1016/j.powtec.2014.12.054
21.
Miao
,
G.
,
Du
,
W.
,
Pei
,
Z.
, and
Ma
,
C.
,
2019
, “
Binder Jetting Additive Manufacturing of Ceramics: Analytical and Numerical Models for Powder Spreading Process
,”
ASME 2019 14th International Manufacturing Science and Engineering Conference, MSEC 2019
,
Erie, PA
,
June 10–14
, pp.
V001T01A002-1
7
.
22.
Stovall
,
T.
,
de Larrard
,
F.
, and
Buil
,
M.
,
1986
, “
Linear Packing Density Model of Grain Mixtures
,”
Powder Technol.
,
48
(
1
), pp.
1
12
. 10.1016/0032-5910(86)80058-4
23.
Kwan
,
A. K. H.
, and
Fung
,
W. W. S.
,
2009
, “
Packing Density Measurement and Modelling of Fine Aggregate and Mortar
,”
Cem. Concr. Compos.
,
31
(
6
), pp.
349
357
. 10.1016/j.cemconcomp.2009.03.006
24.
de Larrard
,
F.
,
1999
,
Concrete Mixture Proportioning: A Scientific Approach
,
E & FN Spon
,
London
.
25.
Scott
,
G. D.
,
1960
, “
Packing of Spheres: Packing of Equal Spheres
,”
Nature
,
188
(
4754
), pp.
908
909
. 10.1038/188908a0
26.
German
,
R. M.
,
1989
,
Particle Packing Characteristics
,
Metal Powder Industries Federation
,
Princeton, NJ
.
27.
Yu
,
A. B.
,
Bridgwater
,
J.
, and
Burbidge
,
A.
,
1997
, “
On the Modelling of the Packing of Fine Particles
,”
Powder Technol.
,
92
(
3
), pp.
185
194
. 10.1016/S0032-5910(97)03219-1
28.
Abdullah
,
E. C.
, and
Geldart
,
D.
,
1999
, “
The Use of Bulk Density Measurements as Flowability Indicators
,”
Powder Technol.
,
102
(
2
), pp.
151
165
. 10.1016/S0032-5910(98)00208-3
29.
ASTM International
,
2015
, “
B527-15: Standard Test Method for Tap Density of Metal Powders and Compounds
.”
30.
Rahaman
,
M. N.
,
2003
,
Ceramic Processing and Sintering
,
CRC Press
,
New York
.
31.
Melcher
,
R.
,
Travitzky
,
N.
,
Zollfrank
,
C.
, and
Greil
,
P.
,
2011
, “
3D Printing of Al2O3/Cu-O Interpenetrating Phase Composite
,”
J. Mater. Sci.
,
46
(
5
), pp.
1203
1210
. 10.1007/s10853-010-4896-3
32.
Gu
,
H.
,
Gong
,
H.
,
Dilip
,
J. J. S.
,
Pal
,
D.
,
Hicks
,
A.
,
Doak
,
H.
, and
Stucker
,
B.
,
2014
, “
Effects of Powder Variation on the Microstructure and Tensile Strength of Ti6Al4V Parts Fabricated by Selective Laser Melting
,”
Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
470
483
.
33.
Kwan
,
A. K. H.
,
Chan
,
K. W.
, and
Wong
,
V.
,
2013
, “
A 3-Parameter Particle Packing Model Incorporating the Wedging Effect
,”
Powder Technol.
,
237
, pp.
172
179
. 10.1016/j.powtec.2013.01.043
You do not currently have access to this content.