Abstract

The demand for product customization and flexible manufacturing techniques is growing day by day to meet the rapid changes in customer requirements. The current review presents the developments in the domains of incremental sheet forming (ISF) and deformation machining (DM) strategies to obtain thin monolithic geometries. The study focuses on the literature on room temperature single point incremental forming that can be applied to the DM. Thin structural parts are challenging to produce by machining because they have inadequate static and dynamic stiffness and low thermal stability. Significant research work on the evolution of diverse theories that emerged to address the fundamental mechanisms of ISF and DM processes has been reported in the literature. This paper presents an outline of the significant process and response parameters, experimental strategies, deformation mechanics and fracture behavior, toolpath generation techniques, and processes’ applications. The paper reports the motivation, research directions, existing gaps, and expansion in the domains of DM processes. The paper also outlines the evolution of incremental forming for deformation machining in the context of future critical applications in the domains of biomedical, aerospace, and automotive engineering.

References

1.
Wong
,
C. C.
,
Dean
,
T. A.
, and
Lin
,
J.
,
2003
, “
A Review of Spinning, Shear Forming and Flow Forming Processes
,”
Int. J. Mach. Tools Manuf.
,
43
(
14
), pp.
1419
1435
.
2.
Hagan
,
E.
, and
Jeswiet
,
J.
,
2003
, “
A Review of Conventional and Modern Single-Point Sheet Metal Forming Methods
,”
Proc. Inst. Mech. Eng. B
,
217
(
2
), pp.
213
225
.
3.
Filice
,
L.
,
Fratini
,
L.
, and
Micari
,
F.
,
2002
, “
Analysis of Material Formability in Incremental Forming
,”
CIRP Ann.
,
51
(
1
), pp.
199
202
.
4.
Jeswiet
,
J.
,
Micari
,
F.
,
Hirt
,
G.
,
Bramley
,
A.
,
Duflou
,
J.
, and
Allwood
,
J.
,
2005
, “
Asymmetric Single Point Incremental Forming of Sheet Metal
,”
CIRP Ann.
,
54
(
2
), pp.
88
114
.
5.
Jeswiet
,
J.
, and
Young
,
D.
,
2005
, “
Forming Limit Diagrams for Single-Point Incremental Forming of Aluminium Sheet
,”
Proc. Inst. Mech. Eng. B
,
219
(
4
), pp.
359
364
.
6.
Emmens
,
W. C.
,
Sebastiani
,
G.
, and
van den Boogaard
,
A. H.
,
2010
, “
The Technology of Incremental Sheet Forming—A Brief Review of the History
,”
J. Mater. Process. Technol.
,
210
(
8
), pp.
981
997
.
7.
Gatea
,
S.
,
Ou
,
H.
, and
McCartney
,
G.
,
2016
, “
Review on the Influence of Process Parameters in Incremental Sheet Forming
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1–4
), pp.
479
499
.
8.
Cusanno
,
A.
,
Negrini
,
N. C.
,
Villa
,
T.
,
Fare
,
S.
,
Garcia-Romeu
,
M. L.
, and
Palumbo
,
G.
,
2021
, “
Post Forming Analysis and In Vitro Biological Characterization of AZ31B Processed by Incremental Forming and Coated With Electrospun Polycaprolactone
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011012
.
9.
Singh
,
S. A.
,
Priyadarshi
,
S.
, and
Tandon
,
P.
,
2021
, “
Comparative Study of Incremental Forming and Elevated Temperature Incremental Forming Through Experimental Investigations on AA 1050 Sheet
,”
ASME J. Manuf. Sci. Eng.
,
143
(
6
), p.
064501
.
10.
Li
,
W.
,
Attallah
,
M. M.
, and
Essa
,
K.
,
2022
, “
Experimental and Numerical Investigations on the Process Quality and Microstructure During Induction Heating Assisted Increment Forming of Ti-6Al-4V Sheet
,”
J. Mater. Process. Technol.
,
299
, p.
117323
.
11.
Kotkunde
,
N.
,
Gupta
,
A. K.
,
Paresi
,
P. R.
, and
Singh
,
S. K.
,
2017
, “
Experimental and Finite Element Studies of Stretch Forming Process for Ti-6Al-4V Alloy at Elevated Temperature
,”
Mater. Today: Proc.
,
4
(
4
), pp.
5266
5273
.
12.
Lu
,
B.
,
Fang
,
Y.
,
Xu
,
D. K.
,
Chen
,
J.
,
Ai
,
S.
,
Long
,
H.
,
Ou
,
H.
, and
Cao
,
J.
,
2015
, “
Investigation of Material Deformation Mechanism in Double Side Incremental Sheet Forming
,”
Int. J. Mach. Tools Manuf.
,
93
, pp.
37
48
.
13.
Moser
,
N.
,
Zhang
,
Z.
,
Ren
,
H.
,
Zhang
,
H.
,
Shi
,
Y.
,
Ndip-Agbor
,
E. E.
,
Lu
,
B.
,
Chen
,
J.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2016
, “
Effective Forming Strategy for Double-Sided Incremental Forming Considering In-Plane Curvature and Tool Direction
,”
CIRP Ann.
,
65
(
1
), pp.
265
268
.
14.
Reddy
,
N. V.
, and
Lingam
,
R.
,
2018
, “
Double Sided Incremental Forming: Capabilities and Challenges
,”
J. Phys.: Conf. Ser.
,
1063
(
1
), p.
012170
.
15.
Smith
,
S.
,
Wilhelm
,
R.
,
Dutterer
,
B.
,
Cherukuri
,
H.
, and
Goel
,
G.
,
2012
, “
Sacrificial Structure Preforms for Thin Part Machining
,”
CIRP Ann.
,
61
(
1
), pp.
379
382
.
16.
Ghorbani-Menghari
,
H.
,
Azadipour
,
M.
,
Ghasempour-Mouziraji
,
M.
,
Hoon Moon
,
Y.
, and
Hoon Kim
,
J.
,
2022
, “
Effect of Process Parameters on Formability in Two-Point Incremental Forming-Machining of Planar and Twisted AA5083 Blades
,”
Proc. Inst. Mech. Eng. B
,
236
(
8
), pp.
1071
1080
.
17.
Naghdi Sedeh
,
M. R.
, and
Ghaei
,
A.
,
2021
, “
The Effects of Machining Residual Stresses on Springback in Deformation Machining Bending Mode
,”
Int. J. Adv. Manuf. Technol.
,
114
(
3–4
), pp.
1087
1098
.
18.
Smith
,
S.
,
Woody
,
B.
,
Ziegert
,
J.
, and
Huang
,
Y.
,
2007
, “
Deformation Machining—A New Hybrid Process
,”
CIRP Ann.
,
56
(
1
), pp.
281
284
.
19.
Singh
,
A.
, and
Agrawal
,
A.
,
2015
, “
Experimental Investigation on Elastic Spring Back in Deformation Machining Bending Mode
,”
Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference MSEC2015
,
Charlotte, NC
,
June 8–12
, pp.
1
8
.
20.
Singh
,
A.
, and
Agrawal
,
A.
,
2016
, “
Investigations on Structural Thinning and Compensation Stratagem in Deformation Machining Stretching Mode
,”
Manuf. Lett.
,
9
, pp.
1
6
.
21.
Singh
,
A.
, and
Agrawal
,
A.
,
2017
, “
Experimental Force Modeling for Deformation Machining Stretching Mode for Aluminum Alloys
,”
Sadhana—Acad. Proc. Eng. Sci.
,
42
(
2
), pp.
271
280
.
22.
Singh
,
A.
, and
Agrawal
,
A.
,
2018
, “
Investigation of Parametric Effects on Geometrical Inaccuracies in Deformation Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p. 074501.
23.
Singh
,
A.
,
Nirala
,
H. K.
, and
Agrawal
,
A.
,
2016
, “
Investigations on Structural Thinning in Deformation Machining Stretching Mode
,”
AIP Conf. Proc.
,
1769
(
1
), p.
070017
.
24.
Singh
,
A.
, and
Agrawal
,
A.
,
2014
, “
Comparison of Dimensional Repeatability and Accuracy for Deformation Machining Stretching Mode With Sheet Metal Components
,”
All India Manufacturing Technology, Design and Research Conference (AIMTDR )
,
Guwahati, Assam, India
,
Dec. 12–14
, pp.
1
7
.
25.
Smith
,
K. S.
,
Woody
,
B. A.
,
Ziegert
,
J. C.
, and
Cao
,
J.
,
2013
, “
Deformation Machining Systems and Methods
,” U.S. Patent 8,545,142.
26.
Ambrogio
,
G.
, and
Gagliardi
,
F.
,
2015
, “
Temperature Variation During High Speed Incremental Forming on Different Lightweight Alloys
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1819
1825
.
27.
Ambrogio
,
G.
,
Gagliardi
,
F.
,
Bruschi
,
S.
, and
Filice
,
L.
,
2013
, “
On the High-Speed Single Point Incremental Forming of Titanium Alloys
,”
CIRP Ann.
,
62
(
1
), pp.
243
246
.
28.
Khalatbari
,
H.
,
Iqbal
,
A.
,
Shi
,
X.
,
Gao
,
L.
,
Hussain
,
G.
, and
Hashemipour
,
M.
,
2015
, “
High-Speed Incremental Forming Process: A Trade-Off Between Formability and Time Efficiency
,”
Mater. Manuf. Processes
,
30
(
11
), pp.
1354
1363
.
29.
Yi
,
J.
,
Wang
,
X.
,
Jiao
,
L.
,
Xiang
,
J.
, and
Yi
,
F.
,
2019
, “
Research on Deformation Law and Mechanism for Milling Micro Thin Wall With Mixed Boundaries of Titanium Alloy in Mesoscale
,”
Thin-Walled Struct.
,
144
, p.
106329
.
30.
Yi
,
J.
,
Xiang
,
J.
,
Yi
,
F.
,
Zhao
,
Y.
,
Wang
,
X.
,
Jiao
,
L.
, and
Kang
,
Q.
,
2020
, “
Prediction of Mesoscale Deformation in Milling Micro Thin Wall Based on Cantilever Boundary
,”
Int. J. Adv. Manuf. Technol.
,
106
(
7–8
), pp.
2875
2892
.
31.
Wang
,
L.
, and
Si
,
H.
,
2018
, “
Machining Deformation Prediction of Thin-Walled Workpieces in Five-Axis Flank Milling
,”
Int. J. Adv. Manuf. Technol.
,
97
(
9–12
), pp.
4179
4193
.
32.
Izamshah
,
R.
,
Mo
,
J. P. T.
, and
Ding
,
S.
,
2012
, “
Hybrid Deflection Prediction on Machining Thin-Wall Monolithic Aerospace Components
,”
Proc. Inst. Mech. Eng. Part B
,
226
(
4
), pp.
592
605
.
33.
Cheng
,
D. J.
,
Xu
,
F.
,
Xu
,
S. H.
,
Zhang
,
C. Y.
,
Zhang
,
S. W.
, and
Kim
,
S. J.
,
2020
, “
Minimization of Surface Roughness and Machining Deformation in Milling of Al Alloy Thin-Walled Parts
,”
Int. J. Precis. Eng. Manuf.
,
21
(
9
), pp.
1597
1613
.
34.
Haichao
,
Y.
,
Guohua
,
Q.
,
Huamin
,
W.
,
Dunwen
,
Z.
, and
Xiong
,
H.
,
2020
, “
A Machining Position Optimization Approach to Workpiece Deformation Control for Aeronautical Monolithic Components
,”
Int. J. Adv. Manuf. Technol.
,
109
(
1–2
), pp.
299
313
.
35.
Jeswiet
,
J.
,
Hagan
,
E.
, and
Szekeres
,
A.
,
2002
, “
Forming Parameters for Incremental Forming of Aluminium Alloy Sheet Metal
,”
Proc. Inst. Mech. Eng. B
,
216
(
10
), pp.
1367
1371
.
36.
Obikawa
,
T.
,
Satou
,
S.
, and
Hakutani
,
T.
,
2009
, “
Dieless Incremental Micro-Forming of Miniature Shell Objects of Aluminum Foils
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
906
915
.
37.
Buffa
,
G.
,
Campanella
,
D.
, and
Fratini
,
L.
,
2013
, “
On the Improvement of Material Formability in SPIF Operation Through Tool Stirring Action
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1343
1351
.
38.
Davarpanah
,
M. A.
,
Mirkouei
,
A.
,
Yu
,
X.
,
Malhotra
,
R.
, and
Pilla
,
S.
,
2015
, “
Effects of Incremental Depth and Tool Rotation on Failure Modes and Microstructural Properties in Single Point Incremental Forming of Polymers
,”
J. Mater. Process. Technol.
,
222
, pp.
287
300
.
39.
Xu
,
D.
,
Wu
,
W.
,
Malhotra
,
R.
,
Chen
,
J.
,
Lu
,
B.
, and
Cao
,
J.
,
2013
, “
Mechanism Investigation for the Influence of Tool Rotation and Laser Surface Texturing (LST) on Formability in Single Point Incremental Forming
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
37
46
.
40.
Riaz
,
A. A.
,
Hussain
,
G.
,
Ullah
,
N.
,
Wei
,
H.
,
Alkahtani
,
M.
, and
Khan
,
M. N.
,
2021
, “
An Investigation on the Effects of Tool Rotational Speed and Material Temper on Post-ISF Tensile Properties of Al2219 Alloy
,”
J. Mater. Res. Technol.
,
10
, pp.
853
867
.
41.
Durante
,
M.
,
Formisano
,
A.
,
Langella
,
A.
, and
Capece Minutolo
,
F. M.
,
2009
, “
The Influence of Tool Rotation on an Incremental Forming Process
,”
J. Mater. Process. Technol.
,
209
(
9
), pp.
4621
4626
.
42.
Li
,
Y.
,
Liu
,
Z.
,
Daniel
,
W. J. T.
, and
Meehan
,
P. A.
,
2014
, “
Simulation and Experimental Observations of Effect of Different Contact Interfaces on the Incremental Sheet Forming Process
,”
Mater. Manuf. Processes
,
29
(
2
), pp.
121
128
.
43.
Kim
,
Y. H.
, and
Park
,
J. J.
,
2002
, “
Effect of Process Parameters on Formability in Incremental Forming of Sheet Metal
,”
J. Mater. Process. Technol.
,
130–131
, pp.
42
46
.
44.
Lu
,
B.
,
Fang
,
Y.
,
Xu
,
D. K.
,
Chen
,
J.
,
Ou
,
H.
,
Moser
,
N. H.
, and
Cao
,
J.
,
2014
, “
Mechanism Investigation of Friction-Related Effects in Single Point Incremental Forming Using a Developed Oblique Roller-Ball Tool
,”
Int. J. Mach. Tools Manuf.
,
85
, pp.
14
29
.
45.
Li
,
Y.
,
Chen
,
X.
,
Liu
,
Z.
,
Sun
,
J.
,
Li
,
F.
,
Li
,
J.
, and
Zhao
,
G.
,
2017
, “
A Review on the Recent Development of Incremental Sheet-Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2439
2462
.
46.
Vanhove
,
H.
,
Carette
,
Y.
, and
Duflou
,
J. R.
,
2019
, “
An Explorative Study on the Influence of an Elliptical Tool on Incremental Forming
,”
Procedia Manuf.
,
29
, pp.
74
79
.
47.
Wu
,
R.
,
Hu
,
Q.
,
Li
,
M.
,
Cai
,
S.
, and
Chen
,
J.
,
2021
, “
Evaluation of the Forming Limit of Incremental Sheet Forming Based on Ductile Damage
,”
J. Mater. Process. Technol.
,
287
, p.
116497
.
48.
Ziran
,
X.
,
Gao
,
L.
,
Hussain
,
G.
, and
Cui
,
Z.
,
2010
, “
The Performance of Flat End and Hemispherical End Tools in Single-Point Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
46
(
9–12
), pp.
1113
1118
.
49.
Durante
,
M.
,
Formisano
,
A.
, and
Langella
,
A.
,
2011
, “
Observations on the Influence of Tool-Sheet Contact Conditions on an Incremental Forming Process
,”
J. Mater. Eng. Perform.
,
20
(
6
), pp.
941
946
.
50.
McAnulty
,
T.
,
Jeswiet
,
J.
, and
Doolan
,
M.
,
2017
, “
Formability in Single Point Incremental Forming: A Comparative Analysis of the State of the Art
,”
CIRP J. Manuf. Sci. Technol.
,
16
, pp.
43
54
.
51.
Pandivelan
,
C.
,
Jeevanantham
,
A. K.
, and
Sathiyanarayanan
,
C.
,
2018
, “
Optimization Study on Incremental Forming of Sheet Metal AA5052 for Variable Wall Angle Using CNC Milling Machine
,”
Mater. Today: Proc.
,
5
(
5
), pp.
12832
12836
.
52.
Lu
,
H.
,
Li
,
Y.
,
Liu
,
Z.
,
Liu
,
S.
, and
Meehan
,
P. A.
,
2014
, “
Study on Step Depth for Part Accuracy Improvement in Incremental Sheet Forming Process
,”
Adv. Mater. Res.
,
939
, pp.
274
280
.
53.
Ai
,
S.
, and
Long
,
H.
,
2019
, “
A Review on Material Fracture Mechanism in Incremental Sheet Forming
,”
Int. J. Adv. Manuf. Technol.
,
104
(
1–4
), pp.
33
61
.
54.
Le
,
V. S.
,
Ghiotti
,
A.
, and
Lucchetta
,
G.
,
2008
, “
Preliminary Studies on Single Point Incremental Forming for Thermoplastic Materials
,”
Int. J. Mater. Form.
,
1
(
S1
), pp.
1179
1182
.
55.
He
,
A.
,
Wang
,
C.
,
Liu
,
S.
, and
Meehan
,
P. A.
,
2020
, “
Switched Model Predictive Path Control of Incremental Sheet Forming for Parts With Varying Wall Angles
,”
J. Manuf. Process.
,
53
, pp.
342
355
.
56.
Wu
,
S.
,
Ma
,
Y.
,
Gao
,
L.
,
Zhao
,
Y.
,
Rashed
,
S.
, and
Ma
,
N.
,
2020
, “
A Novel Multi-Step Strategy of Single Point Incremental Forming for High Wall Angle Shape
,”
J. Manuf. Process.
,
56
, pp.
697
706
.
57.
Jeswiet
,
J.
,
Adams
,
D.
,
Doolan
,
M.
,
McAnulty
,
T.
, and
Gupta
,
P.
,
2015
, “
Single Point and Asymmetric Incremental Forming
,”
Adv. Manuf.
,
3
(
4
), pp.
253
262
.
58.
Shanmuganatan
,
S. P.
, and
Senthil Kumar
,
V. S.
,
2013
, “
Metallurgical Analysis and Finite Element Modelling for Thinning Characteristics of Profile Forming on Circular Cup
,”
Mater. Des.
,
44
, pp.
208
215
.
59.
Hussain
,
G.
,
Gao
,
L.
, and
Zhang
,
Z. Y.
,
2008
, “
Formability Evaluation of a Pure Titanium Sheet in the Cold Incremental Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
37
(
9–10
), pp.
920
926
.
60.
Fan
,
G.
,
Sun
,
F.
,
Meng
,
X.
,
Gao
,
L.
, and
Tong
,
G.
,
2010
, “
Electric Hot Incremental Forming of Ti-6Al-4V Titanium Sheet
,”
Int. J. Adv. Manuf. Technol.
,
49
(
9–12
), pp.
941
947
.
61.
Azevedo
,
N. G.
,
Farias
,
J. S.
,
Bastos
,
R. P.
,
Teixeira
,
P.
,
Davim
,
J. P.
, and
de Sousa
,
R. J. A.
,
2015
, “
Lubrication Aspects During Single Point Incremental Forming for Steel and Aluminum Materials
,”
Int. J. Precis. Eng. Manuf.
,
16
(
3
), pp.
589
595
.
62.
Sousa
,
R.
,
2016
, “
Incremental Sheet Forming Technologies
,”
Ref. Module Mater. Sci. Mater. Eng.
,
1
(
1967
), pp.
1
10
.
63.
Eyckens
,
P.
,
Duflou
,
J.
,
Van Bael
,
A.
, and
Van Houtte
,
P.
,
2010
, “
The Significance of Friction in the Single Point Incremental Forming Process
,”
Int. J. Mater. Form.
,
3
(
Suppl. 1
), pp.
947
950
.
64.
Lukic
,
D.
,
Cep
,
R.
,
Vukman
,
J.
,
Antic
,
A.
,
Djurdjev
,
M.
, and
Milosevic
,
M.
,
2020
, “
Multi-Criteria Selection of the Optimal Parameters for High-Speed Machining of Aluminum Alloy Al7075 Thin-Walled Parts
,”
Metals (Basel)
,
10
(
12
), p.
1570
.
65.
Abbassi
,
F.
,
Pantale
,
O.
,
Zghal
,
A.
, and
Rakotomalala
,
R.
,
2006
, “
Prediction of Sheet Metal Formability (FLD) By Using Diverse Method
,”
III European Conference on Computational Mechanics
,
Lisbon, Portugal
,
June 5–9
, pp.
532
532
.
66.
Kumar
,
N.
,
Singh
,
A.
, and
Agrawal
,
A.
,
2020
, “
Formability Analysis of AA1200 H14 Aluminum Alloy Using Single Point Incremental Forming Process
,”
Trans. Indian Inst. Met.
,
73
(
7
), pp.
1975
1984
.
67.
Martins
,
P. A. F.
,
Bay
,
N.
,
Skjoedt
,
M.
, and
Silva
,
M. B.
,
2008
, “
Theory of Single Point Incremental Forming
,”
CIRP Ann.
,
57
(
1
), pp.
247
252
.
68.
Zhang
,
R.
,
Shao
,
Z.
, and
Lin
,
J.
,
2018
, “
A Review on Modelling Techniques for Formability Prediction of Sheet Metal Forming
,”
Int. J. Lightweight Mater. Manuf.
,
1
(
3
), pp.
115
125
.
69.
Hussain
,
G.
,
Gao
,
L.
,
Hayat
,
N.
, and
Dar
,
N. U.
,
2010
, “
The Formability of Annealed and Pre-Aged AA-2024 Sheets in Single-Point Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
46
(
5–8
), pp.
543
549
.
70.
Liu
,
Z.
,
Li
,
Y.
, and
Meehan
,
P. A.
,
2013
, “
Experimental Investigation of Mechanical Properties, Formability and Force Measurement for AA7075-O Aluminum Alloy Sheets Formed by Incremental Forming
,”
Int. J. Precis. Eng. Manuf.
,
14
(
11
), pp.
1891
1899
.
71.
Adams
,
D.
, and
Jeswiet
,
J.
,
2014
, “
Single-Point Incremental Forming of 6061-T6 Using Electrically Assisted Forming Methods
,”
Proc. Inst. Mech. Eng. B
,
228
(
7
), pp.
757
764
.
72.
Hussain
,
G.
,
Gao
,
L.
,
Hayat
,
N.
, and
Qijian
,
L.
,
2007
, “
The Effect of Variation in the Curvature of Part on the Formability in Incremental Forming: An Experimental Investigation
,”
Int. J. Mach. Tools Manuf.
,
47
(
14
), pp.
2177
2181
.
73.
Masoudi
,
S.
,
Amini
,
S.
,
Saeidi
,
E.
, and
Eslami-Chalander
,
H.
,
2014
, “
Effect of Machining-Induced Residual Stress on the Distortion of Thin-Walled Parts
,”
Int. J. Adv. Manuf. Technol.
,
76
(
1–4
), pp.
597
608
.
74.
Huang
,
X.
,
Sun
,
J.
, and
Li
,
J.
,
2015
, “
Finite Element Simulation and Experimental Investigation on the Residual Stress-Related Monolithic Component Deformation
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
1035
1041
.
75.
Singh
,
A.
, and
Agrawal
,
A.
,
2016
, “
Comparison of Deforming Forces, Residual Stresses and Geometrical Accuracy of Deformation Machining With Conventional Bending and Forming
,”
J. Mater. Process. Technol.
,
234
, pp.
259
271
.
76.
Wu
,
Q.
,
Li
,
D. P.
, and
Zhang
,
Y. D.
,
2016
, “
Detecting Milling Deformation in 7075 Aluminum Alloy Aeronautical Monolithic Components Using the Quasi-Symmetric Machining Method
,”
Metals (Basel)
,
6
(
4
), p.
80
.
77.
Gao
,
H.
,
Zhang
,
Y.
,
Wu
,
Q.
, and
Song
,
J.
,
2017
, “
An Analytical Model for Predicting the Machining Deformation of a Plate Blank Considers Biaxial Initial Residual Stresses
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
1473
1486
.
78.
Gao
,
H.
,
Zhang
,
Y.
,
Wu
,
Q.
, and
Li
,
B.
,
2018
, “
Investigation on Influences of Initial Residual Stress on Thin-Walled Part Machining Deformation Based on a Semi-Analytical Model
,”
J. Mater. Process. Technol.
,
262
, pp.
437
448
.
79.
Li
,
B.
,
Deng
,
H.
,
Hui
,
D.
,
Hu
,
Z.
, and
Zhang
,
W.
,
2020
, “
A Semi-Analytical Model for Predicting the Machining Deformation of Thin-Walled Parts Considering Machining-Induced and Blank Initial Residual Stress
,”
Int. J. Adv. Manuf. Technol.
,
110
(
1–2
), pp.
139
161
.
80.
Zhang
,
Z.
,
Luo
,
M.
,
Tang
,
K.
, and
Zhang
,
D.
,
2020
, “
A New In-Processes Active Control Method for Reducing the Residual Stresses Induced Deformation of Thin-Walled Parts
,”
J. Manuf. Process.
,
59
, pp.
316
325
.
81.
Singh
,
A.
, and
Agrawal
,
A.
,
2015
, “
Investigation of Surface Residual Stress Distribution in Deformation Machining Process for Aluminum Alloy
,”
J. Mater. Process. Technol.
,
225
, pp.
195
202
.
82.
Rashid
,
H.
,
Hussain
,
G.
,
Rehman
,
K.
,
Khan
,
S.
,
Alkahtani
,
M.
, and
Abidi
,
M. H.
,
2020
, “
Characterization of Residual Stresses in an Asymmetrical Shape Produced Through Incremental Forming
,”
CIRP J. Manuf. Sci. Technol.
,
31
, pp.
478
491
.
83.
Liu
,
S.
,
Zheng
,
L.
,
Zhang
,
Z. H.
, and
Wen
,
D. H.
,
2006
, “
Optimal Fixture Design in Peripheral Milling of Thin-Walled Workpiece
,”
Int. J. Adv. Manuf. Technol.
,
28
(
7–8
), pp.
653
658
.
84.
Sundararaman
,
K. A.
,
Padmanaban
,
K. P.
, and
Sabareeswaran
,
M.
,
2015
, “
Optimization of Machining Fixture Layout Using Integrated Response Surface Methodology and Evolutionary Techniques
,”
Proc. Inst. Mech. Eng. Part C
,
230
(
13
), pp.
2245
2259
.
85.
Ma
,
R.
,
Wang
,
C.
,
Zhai
,
R.
, and
Zhao
,
J.
,
2019
, “
An Iterative Compensation Algorithm for Springback Control in Plane Deformation and Its Application
,”
Chin. J. Mech. Eng. (Engl. Ed.)
,
32
(
1
), pp.
1
12
.
86.
Deokar
,
S. U.
,
Jain
,
P. K.
,
Tandon
,
P.
, and
Pathak
,
A.
,
2019
, “
Analysis of Springback and Force Behavior in Single Point Incremental Sheet Forming Though FEA
,”
Mater. Today: Proc.
,
18
(
Part 7
), pp.
3330
3339
.
87.
Tolipov
,
A.
,
Elghawail
,
A.
,
Abosaf
,
M.
,
Pham
,
D.
,
Hassanin
,
H.
, and
Essa
,
K.
,
2019
, “
Multipoint Forming Using Mesh-Type Elastic Cushion: Modelling and Experimentation
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2079
2090
.
88.
Li
,
Z. L.
, and
Zhu
,
L. M.
,
2019
, “
Compensation of Deformation Errors in Five-Axis Flank Milling of Thin-Walled Parts Via Tool Path Optimization
,”
Precis. Eng.
,
55
, pp.
77
87
.
89.
Song
,
X.
,
Zhang
,
J.
,
Zhai
,
W.
,
Taureza
,
M.
,
Castagne
,
S.
, and
Danno
,
A.
,
2017
, “
Numerical and Experimental Study of Micro Single Point Incremental Forming Process
,”
Procedia Eng.
,
207
, pp.
825
830
.
90.
Fratini
,
L.
,
Ambrogio
,
G.
,
Di Lorenzo
,
R.
,
Filice
,
L.
, and
Micari
,
F.
,
2004
, “
Influence of Mechanical Properties of the Sheet Material on Formability in Single Point Incremental Forming
,”
CIRP Ann.
,
53
(
1
), pp.
207
210
.
91.
Ratchev
,
S.
,
Liu
,
S.
, and
Becker
,
A. A.
,
2005
, “
Error Compensation Strategy in Milling Flexible Thin-Wall Parts
,”
J. Mater. Process. Technol.
,
162–163
, pp.
673
681
.
92.
Gao
,
Y. Y.
,
Ma
,
J. W.
,
Jia
,
Z. Y.
,
Wang
,
F. J.
,
Si
,
L. K.
, and
Song
,
D. N.
,
2016
, “
Tool Path Planning and Machining Deformation Compensation in High-Speed Milling for Difficult-to-Machine Material Thin-Walled Parts With Curved Surface
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
1757
1767
.
93.
Lasunon
,
O. U.
,
2013
, “
Surface Roughness in Incremental Sheet Metal Forming of AA5052
,”
Adv. Mater. Res.
,
753–755
, pp.
203
206
.
94.
Kumar
,
V.
, and
Kumar
,
R.
,
2020
, “
Investigation of Surface Roughness in Incremental Sheet Forming of AA 2014-T6 Using Taguchi’s Method
,”
J. Phys.: Conf. Ser.
,
1519
(
1
), p.
012009
.
95.
Kumar
,
P.
,
Priyadarshi
,
S.
, and
Tandon
,
P.
,
2021
, “
Investigating the Incremental Forming Capabilities of Extra Deep Drawn Steel
,”
Proc. Inst. Mech. Eng. Part C
,
236
(
5
), pp.
2352
2362
.
96.
Kumar
,
P.
,
Priyadarshi
,
S.
,
Roy
,
J. J.
,
Samal
,
M. K.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2015
, “
Effect of Tool Shape on Surface Finish of Components Formed Through Incremental Sheet Forming Process
,”
International Mechanical Engineering Congress and Exposition (IMECE 2015)
,
Houston, TX
,
Nov. 13–19
, Vol. 57359, p. V02AT02A035.
97.
Shojaeefard
,
M. H.
,
Khalkhali
,
A.
, and
Shahbaz
,
S.
,
2021
, “
Sensitivity Analysis and Optimization of the Surface Roughness in the Incremental Forming of Mild Steel Sheets
,”
Sci. Iran.
,
28
(
1
), pp.
316
325
.
98.
Dabwan
,
A.
,
Ragab
,
A. E.
,
Saleh
,
M. A.
,
Anwar
,
S.
,
Ghaleb
,
A. M.
, and
Rehman
,
A. U.
,
2020
, “
Study of the Effect of Process Parameters on Surface Profile Accuracy in Single-Point Incremental Sheet Forming of AA1050-H14 Aluminum Alloy
,”
Adv. Mater. Sci. Eng.
,
2020
, pp.
1
14
.
99.
Ambrogio
,
G.
,
Filice
,
L.
, and
Micari
,
F.
,
2006
, “
A Force Measuring Based Strategy for Failure Prevention in Incremental Forming
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
413
416
.
100.
Chang
,
Z.
,
Li
,
M.
, and
Chen
,
J.
,
2019
, “
Analytical Modeling and Experimental Validation of the Forming Force in Several Typical Incremental Sheet Forming Processes
,”
Int. J. Mach. Tools Manuf.
,
140
, pp.
62
76
.
101.
Li
,
Y. L.
,
Sun
,
J.
, and
Li
,
J. F.
,
2016
, “
A Brief Review of Forming Forces in Incremental Sheet Forming
,”
Mater. Sci. Forum
,
861
, pp.
195
200
.
102.
Xiao
,
X.
,
Kim
,
C. I.
,
Lv
,
X. D.
,
Hwang
,
T. S.
, and
Kim
,
Y. S.
,
2019
, “
Formability and Forming Force in Incremental Sheet Forming of AA7075-T6 at Different Temperatures
,”
J. Mech. Sci. Technol.
,
33
(
8
), pp.
3795
3802
.
103.
Guo
,
X.
,
Gu
,
Y.
,
Wang
,
H.
,
Jin
,
K.
, and
Tao
,
J.
,
2018
, “
The Bauschinger Effect and Mechanical Properties of AA5754 Aluminum Alloy in Incremental Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
1387
1396
.
104.
Deokar
,
S.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2018
, “
Formability Assessment in Single Point Incremental Sheet Forming Through Finite Element Analysis
,”
Mater. Today: Proc.
,
5
(
11
), pp.
25430
25439
.
105.
Jackson
,
K.
, and
Allwood
,
J.
,
2009
, “
The Mechanics of Incremental Sheet Forming
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1158
1174
.
106.
Shrivastava
,
P.
, and
Tandon
,
P.
,
2019
, “
Microstructure and Texture Based Analysis of Forming Behavior and Deformation Mechanism of AA1050 Sheet During Single Point Incremental Forming
,”
J. Mater. Process. Technol.
,
266
, pp.
292
310
.
107.
Maqbool
,
F.
, and
Bambach
,
M.
,
2018
, “
Dominant Deformation Mechanisms in Single Point Incremental Forming (SPIF) and Their Effect on Geometrical Accuracy
,”
Int. J. Mech. Sci.
,
136
, pp.
279
292
.
108.
Malhotra
,
R.
,
Xue
,
L.
,
Belytschko
,
T.
, and
Cao
,
J.
,
2012
, “
Mechanics of Fracture in Single Point Incremental Forming
,”
J. Mater. Process. Technol.
,
212
(
7
), pp.
1573
1590
.
109.
Malhotra
,
R.
,
Cao
,
J.
,
Beltran
,
M.
,
Xu
,
D.
,
Magargee
,
J.
,
Kiridena
,
V.
, and
Xia
,
Z. C.
,
2012
, “
Accumulative-DSIF Strategy for Enhancing Process Capabilities in Incremental Forming
,”
CIRP Ann.
,
61
(
1
), pp.
251
254
.
110.
Smith
,
J.
,
Malhotra
,
R.
,
Liu
,
W. K.
, and
Cao
,
J.
,
2013
, “
Deformation Mechanics in Single-Point and Accumulative Double-Sided Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1185
1201
.
111.
Wang
,
C.
,
Daniel
,
W. J. T.
,
Lu
,
H.
,
Liu
,
S.
, and
Meehan
,
P. A.
,
2021
, “
A Comparative Investigation of Damage Models for Fracture Prediction in Two-Point Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
112
(
11–12
), pp.
3069
3081
.
112.
Chang
,
Z.
, and
Chen
,
J.
,
2021
, “
A New Void Coalescence Mechanism During Incremental Sheet Forming: Ductile Fracture Modeling and Experimental Validation
,”
J. Mater. Process. Technol.
,
298
, p.
117319
.
113.
Lu
,
H.
,
Liu
,
H.
, and
Wang
,
C.
,
2019
, “
Review on Strategies for Geometric Accuracy Improvement in Incremental Sheet Forming
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
3381
3417
.
114.
Ceretti
,
E.
,
Giardini
,
C.
, and
Attanasio
,
A.
,
2004
, “
Experimental and Simulative Results in Sheet Incremental Forming on CNC Machines
,”
J. Mater. Process. Technol.
,
152
(
2
), pp.
176
184
.
115.
Li
,
Y.
,
Daniel
,
W. J. T.
, and
Meehan
,
P. A.
,
2017
, “
Deformation Analysis in Single-Point Incremental Forming Through Finite Element Simulation
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1–4
), pp.
255
267
.
116.
Singh
,
A.
, and
Agrawal
,
A.
,
2017
, “
Experimental and Numerical Investigations on Structural Thinning, Thinning Evolution and Compensation Stratagem in Deformation Machining Stretching Mode
,”
J. Manuf. Process.
,
26
, pp.
216
225
.
117.
Liu
,
C.
,
Li
,
Y.
,
Zhou
,
G.
, and
Shen
,
W.
,
2018
, “
A Sensor Fusion and Support Vector Machine Based Approach for Recognition of Complex Machining Conditions
,”
J. Intell. Manuf.
,
29
(
8
), pp.
1739
1752
.
118.
Qi
,
X. D.
,
Zhang
,
W.
,
Tian
,
H.
,
Zheng
,
X. W.
,
Yu
,
K. Q.
, and
Yang
,
Y. F.
,
2016
, “
Research on Overall Aluminum Alloy Flange Machining Deformation
,”
Mater. Sci. Forum
,
836–837
, pp.
436
443
.
119.
Loney
,
G. C.
, and
Ozsoy
,
T. M.
,
1987
, “
NC Machining of Free Form Surfaces
,”
Comput. Aided Des.
,
19
(
2
), pp.
85
90
.
120.
Skjoedt
,
M.
,
Silva
,
M. B.
,
Bay
,
N.
,
Martins
,
P. A. F.
, and
Lenau
,
T.
,
2007
, “
Single Point Incremental Forming Using a Dummy Sheet
,”
International Conference on new Forming Technology
,
Bremen, Germany
,
Sept. 20–21
, Vol. 2, pp.
267
276
.
121.
Malhotra
,
R.
,
Reddy
,
N. V.
, and
Cao
,
J.
,
2010
, “
Automatic 3D Spiral Toolpath Generation for Single Point Incremental Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061003
.
122.
Attanasio
,
A.
,
Ceretti
,
E.
, and
Giardini
,
C.
,
2006
, “
Optimization of Tool Path in Two Points Incremental Forming
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
409
412
.
123.
Lu
,
B.
,
Chen
,
J.
,
Ou
,
H.
, and
Cao
,
J.
,
2013
, “
Feature-Based Tool Path Generation Approach for Incremental Sheet Forming Process
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1221
1233
.
124.
Lingam
,
R.
,
Prakash
,
O.
,
Belk
,
J. H.
, and
Reddy
,
N. V.
,
2017
, “
Automatic Feature Recognition and Tool Path Strategies for Enhancing Accuracy in Double Sided Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
1639
1655
.
125.
Nagargoje
,
A.
,
Kankar
,
P. K.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2021
, “
Performance Evaluation of the Data Clustering Techniques and Cluster Validity Indices for Efficient Toolpath Development for Incremental Sheet Forming
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031001
.
126.
Nagargoje
,
A.
,
Kankar
,
P. K.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2021
, “
Comparison of Clustering Techniques for Feature-Based Toolpath Generation in Dieless Manufacturing
,”
ASME 2021 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, Virtual, Online
,
Nov. 1–5
, p. V02BT02A013.
127.
Nagargoje
,
A.
,
Kankar
,
P. K.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2021
, “
Application of Artificial Intelligence Techniques in Incremental Forming: A State-of-the-Art Review
,”
J. Intell. Manuf.
, pp.
1
18
.
128.
Nagargoje
,
A.
,
Kankar
,
P. K.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2021
, “
Development of the Geometrical Feature Extraction Tool Using DBSCAN Clustering for Toolpath Generation in Incremental Forming
,”
Preprint
.
129.
Alves De Sousa
,
R. J.
,
Ferreira
,
J. A. F.
,
Sa De Farias
,
J. B.
,
Torrão
,
J. N. D.
,
Afonso
,
D. G.
, and
Martins
,
M. A. B. E.
,
2014
, “
SPIF-A: On the Development of a New Concept of Incremental Forming Machine
,”
Struct. Eng. Mech.
,
49
(
5
), pp.
645
660
.
130.
Ndip-Agbor
,
E.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2018
, “
Automated Flexible Forming Strategy for Geometries With Multiple Features in Double-Sided Incremental Forming
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031004
.
131.
Nirala
,
H. K.
, and
Agrawal
,
A.
,
2021
, “
Residual Stress Inclusion in the Incrementally Formed Geometry Using Fractal Geometry Based Incremental Toolpath (FGBIT)
,”
J. Mater. Process. Technol.
,
287
, p.
116623
.
132.
Ambrogio
,
G.
,
De Napoli
,
L.
,
Filice
,
L.
,
Gagliardi
,
F.
, and
Muzzupappa
,
M.
,
2005
, “
Application of Incremental Forming Process for High Customised Medical Product Manufacturing
,”
J. Mater. Process. Technol.
,
162–163
(
Spec. Iss.
), pp.
156
162
.
133.
Duflou
,
J. R.
,
Verbert
,
J.
,
Belkassem
,
B.
,
Gu
,
J.
,
Sol
,
H.
,
Henrard
,
C.
, and
Habraken
,
A. M.
,
2008
, “
Process Window Enhancement for Single Point Incremental Forming Through Multi-Step Toolpaths
,”
CIRP Ann.
,
57
(
1
), pp.
253
256
.
134.
Music
,
O.
,
Allwood
,
J. M.
, and
Kawai
,
K.
,
2010
, “
A Review of the Mechanics of Metal Spinning
,”
J. Mater. Process. Technol.
,
210
(
1
), pp.
3
23
.
135.
Eksteen
,
P. D.
, and
Van Der Merwe
,
A. F.
,
2012
, “
Incremental Sheet Forming (ISF) in the Manufacturing of Titanium Based Plate Implants in the Bio-Medical Sector
,”
Proceedings of International Conference on Computers and Industrial Engineering
,
Cape Town, South Africa
,
July 16–18
, Vol. 1, pp.
569
575
.
136.
Oleksik
,
V.
,
Pascu
,
A.
,
Deac
,
C.
,
Fleaca
,
R.
,
Roman
,
M.
, and
Bologa
,
O.
,
2010
, “
The Influence of Geometrical Parameters on the Incremental Forming Process for Knee Implants Analyzed by Numerical Simulation
,”
AIP Conf. Proc.
,
1252
(
1
), pp.
1208
1215
.
137.
Fiorentino
,
A.
,
Marzi
,
R.
, and
Ceretti
,
E.
,
2012
, “
Preliminary Results on Ti Incremental Sheet Forming (ISF) of Biomedical Devices: Biocompatibility, Surface Finishing and Treatment
,”
Int. J. Mechatron. Manuf. Syst.
,
5
(
1
), pp.
36
45
.
138.
Duflou
,
J. R.
,
Behera
,
A. K.
,
Vanhove
,
H.
, and
Bertol
,
L. S.
,
2013
, “
Manufacture of Accurate Titanium Cranio-Facial Implants With High Forming Angle Using Single Point Incremental Forming
,”
Key Eng. Mater.
,
549
, pp.
223
230
.
139.
Bagudanch
,
I.
,
Lozano-Sánchez
,
L. M.
,
Puigpinós
,
L.
,
Sabater
,
M.
,
Elizalde
,
L. E.
,
Elías-Zúñiga
,
A.
, and
Garcia-Romeu
,
M. L.
,
2015
, “
Manufacturing of Polymeric Biocompatible Cranial Geometry by Single Point Incremental Forming
,”
Procedia Eng.
,
132
, pp.
267
273
.
140.
Behera
,
A. K.
,
Lu
,
B.
, and
Ou
,
H.
,
2016
, “
Characterization of Shape and Dimensional Accuracy of Incrementally Formed Titanium Sheet Parts With Intermediate Curvatures Between Two Feature Types
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
1099
1111
.
141.
Piccininni
,
A.
,
Gagliardi
,
F.
,
Guglielmi
,
P.
,
De Napoli
,
L.
,
Ambrogio
,
G.
,
Sorgente
,
D.
, and
Palumbo
,
G.
,
2016
, “
Biomedical Titanium Alloy Prostheses Manufacturing by Means of Superplastic and Incremental Forming Processes
,”
MATEC Web Conf.
,
80
, p.
15007
.
142.
Vanhove
,
H.
,
Carette
,
Y.
,
Vancleef
,
S.
, and
Duflou
,
J. R.
,
2017
, “
Production of Thin Shell Clavicle Implants Through Single Point Incremental Forming
,”
Procedia Eng.
,
183
, pp.
174
179
.
143.
Bambach
,
M.
,
Taleb Araghi
,
B.
, and
Hirt
,
G.
,
2009
, “
Strategies to Improve the Geometric Accuracy in Asymmetric Single Point Incremental Forming
,”
Prod. Eng.
,
3
(
2
), pp.
145
156
.
144.
Li
,
J.
,
Shen
,
J.
, and
Wang
,
B.
,
2013
, “
A Multipass Incremental Sheet Forming Strategy of a Car Taillight Bracket
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2229
2236
.
145.
Bhimavarapu
,
S. B.
,
Maheshwari
,
A. K.
,
Bhargava
,
D.
, and
Narayan
,
S. P.
,
2011
, “
Compressive Deformation Behavior of Al 2024 Alloy Using 2D and 4D Processing Maps
,”
J. Mater. Sci.
,
46
(
9
), pp.
3191
3199
.
146.
Gang
,
L.
,
2009
, “
Study on Deformation of Titanium Thin-Walled Part in Milling Process
,”
J. Mater. Process. Technol.
,
209
(
6
), pp.
2788
2793
.
147.
Behera
,
A. K.
,
Lauwers
,
B.
, and
Duflou
,
J. R.
,
2014
, “
Tool Path Generation Framework for Accurate Manufacture of Complex 3D Sheet Metal Parts Using Single Point Incremental Forming
,”
Comput. Ind.
,
65
(
4
), pp.
563
584
.
148.
Behera
,
A. K.
,
de Sousa
,
R. A.
,
Ingarao
,
G.
, and
Oleksik
,
V.
,
2017
, “
Single Point Incremental Forming: An Assessment of the Progress and Technology Trends From 2005 to 2015
,”
J. Manuf. Process.
,
27
, pp.
37
62
.
149.
Amino
,
M.
,
Mizoguchi
,
M.
,
Terauchi
,
Y.
, and
Maki
,
T.
,
2014
, “
Current Status of ‘Dieless’ Amino’s Incremental Forming
,”
Procedia Eng.
,
81
, pp.
54
62
.
150.
Cheng
,
Z.
,
Li
,
Y.
,
Xu
,
C.
,
Liu
,
Y.
,
Ghafoor
,
S.
, and
Li
,
F.
,
2020
, “
Incremental Sheet Forming Towards Biomedical Implants: A Review
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
7225
7251
.
You do not currently have access to this content.