Abstract

The accurate evaluation of the instantaneous undeformed chip thickness (IUCT) plays a crucial role in the modeling of milling processes. However, the vibrations of the tool–workpiece system can make conventional IUCT models either inaccurate or not applicable. This paper introduces the concept of surface function to describe the milled surface, through which the IUCT can be readily computed. The evolution of this surface function is governed by a partial differential equation (PDE) in the form of a balance law, and the material removal process is characterized by discontinuous conditions at the cutters. A finite volume algorithm is adopted to solve the proposed PDE with discontinuous conditions at the cutters. Through a case study of the asymmetric cutting process, the surface function method demonstrates two main advantages over conventional methods: (i) a detailed description of IUCT evolution considering the influence of the initial shape of the workpiece and (ii) a general framework to accurately compute the IUCT. This method shows a promising potential for computing the IUCT in numerical simulations of chattering phenomenon in the milling process.

References

1.
Le
,
B.
,
Khaliq
,
J.
,
Huo
,
D.
,
Teng
,
X.
, and
Shyha
,
I.
,
2020
, “
A Review on Nanocomposites. Part 2: Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
100802
.
2.
Lei
,
S.
,
Zhao
,
X.
,
Yu
,
X.
,
Hu
,
A.
,
Vukelic
,
S.
,
Jun
,
M. B.
,
Joe
,
H.
,
Yao
,
Y. L.
, and
Shin
,
Y. C.
,
2020
, “
Ultrafast Laser Applications in Manufacturing Processes: A State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031005
.
3.
Shin
,
Y. C.
,
Wu
,
B.
,
Lei
,
S.
,
Cheng
,
G. J.
, and
Lawrence Yao
,
Y.
,
2020
, “
Overview of Laser Applications in Manufacturing and Materials Processing in Recent Years
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110818
.
4.
McConaha
,
M.
,
Venugopal
,
V.
, and
Anand
,
S.
,
2021
, “
Design Tool for Topology Optimization of Self Supporting Variable Density Lattice Structures for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071001
.
5.
Weiss
,
B. M.
,
Hamel
,
J. M.
,
Ganter
,
M. A.
, and
Storti
,
D. W.
,
2021
, “
Data-Driven Additive Manufacturing Constraints for Topology Optimization
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021001
.
6.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
7.
Zhang
,
W.
, and
Wan
,
M.
,
2016
,
Milling Simulation: Metal Milling Mechanics, Dynamics and Clamping Principles
,
John Wiley & Sons
,
Hoboken, NJ
.
8.
Kiss
,
A. K.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2020
, “
Effects of Varying Dynamics of Flexible Workpieces in Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011005
.
9.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P.
, and
Mann
,
B.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
,
262
(
2
), pp.
333
345
.
10.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multifrequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
11.
Afazov
,
S.
,
Ratchev
,
S.
, and
Segal
,
J.
,
2010
, “
Modelling and Simulation of Micro-Milling Cutting Forces
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2154
2162
.
12.
Ismail
,
F.
,
Elbestawi
,
M. A.
,
Du
,
R.
, and
Urbasik
,
K.
,
1993
, “
Generation of Milled Surfaces Including Tool Dynamics and Wear
,”
J. Eng. Ind.
,
115
(
3
), pp.
245
252
.
13.
Insperger
,
T.
,
Gradišek
,
J.
,
Kalveram
,
M.
,
Stépán
,
G.
,
Winert
,
K.
, and
Govekar
,
E.
,
2006
, “
Machine Tool Chatter and Surface Location Error in Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
913
920
.
14.
Li
,
H.
,
Liu
,
K.
, and
Li
,
X.
,
2001
, “
A New Method for Determining the Undeformed Chip Thickness in Milling
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
378
384
.
15.
Faassen
,
R. P. H.
,
van de Wouw
,
N.
,
Nijmeijer
,
H.
, and
Oosterling
,
J. A. J.
,
2006
, “
An Improved Tool Path Model Including Periodic Delay for Chatter Prediction in Milling
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
2
), pp.
167
179
.
16.
Spiewak
,
S.
,
1995
, “
An Improved Model of the Chip Thickness in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
39
42
.
17.
Kumanchik
,
L. M.
, and
Schmitz
,
T. L.
,
2007
, “
Improved Analytical Chip Thickness Model for Milling
,”
Precis. Eng.
,
31
(
3
), pp.
317
324
.
18.
Song
,
G.
,
Li
,
J.
, and
Sun
,
J.
,
2013
, “
Approach for Modeling Accurate Undeformed Chip Thickness in Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
68
(
5–8
), pp.
1429
1439
.
19.
Bao
,
W.
, and
Tansel
,
I.
,
2000
, “
Modeling Micro-end-milling Operations. Part II: Tool Run-out
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2175
2192
.
20.
Li
,
C.
,
Lai
,
X.
,
Li
,
H.
, and
Ni
,
J.
,
2007
, “
Modeling of Three-Dimensional Cutting Forces in Micro-end-milling
,”
J. Micromech. Microeng.
,
17
(
4
), p.
671
.
21.
Chen
,
W.
,
Teng
,
X.
,
Huo
,
D.
, and
Wang
,
Q.
,
2017
, “
An Improved Cutting Force Model for Micro Milling Considering Machining Dynamics
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9
), pp.
3005
3016
.
22.
Rodríguez
,
P.
, and
Labarga
,
J. E.
,
2013
, “
A New Model for the Prediction of Cutting Forces in Micro-End-Milling Operations
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
261
268
.
23.
Li
,
K.
,
Zhu
,
K.
, and
Mei
,
T.
,
2016
, “
A Generic Instantaneous Undeformed Chip Thickness Model for the Cutting Force Modeling in Micromilling
,”
Int. J. Mach. Tools Manuf.
,
105
, pp.
23
31
.
24.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
Multiple Regenerative Effects in Cutting Process and Nonlinear Oscillations
,”
Int. J. Dyn. Control
,
2
(
1
), pp.
86
101
.
25.
Li
,
X.
, and
Li
,
H.
,
2004
, “
Theoretical Modelling of Cutting Forces in Helical End Milling With Cutter Runout
,”
Int. J. Mech. Sci.
,
46
(
9
), pp.
1399
1414
.
26.
Li
,
H.
, and
Li
,
X.
,
2005
, “
A Numerical Study of the Effects of Cutter Runout on Milling Process Geometry Based on True Tooth Trajectory
,”
Int. J. Adv. Manuf. Technol.
,
25
(
5
), pp.
435
443
.
27.
Long
,
X.
,
Balachandran
,
B.
, and
Mann
,
B.
,
2007
, “
Dynamics of Milling Processes With Variable Time Delays
,”
Nonlinear Dyn.
,
47
(
1
), pp.
49
63
.
28.
Han
,
X.
, and
Tang
,
L.
,
2015
, “
Precise Prediction of Forces in Milling Circular Corners
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
184
193
.
29.
Montgomery
,
D.
, and
Altintas
,
Y.
,
1991
, “
Mechanism of Cutting Force and Surface Generation in Dynamic Milling
,”
J. Eng. Ind.
,
113
(
2
), pp.
160
168
.
30.
Paris
,
H.
,
Peigne
,
G.
, and
Mayer
,
R.
,
2004
, “
Surface Shape Prediction in High Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
44
(
15
), pp.
1567
1576
.
31.
Jun
,
M. B. G.
,
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Microend Milling—Part I: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
893
900
.
32.
Gupta
,
S. K.
, and
Wahi
,
P.
,
2016
, “
Global Axial–Torsional Dynamics During Rotary Drilling
,”
J. Sound Vib.
,
375
, pp.
332
352
.
33.
Zhang
,
H.
, and
Detournay
,
E.
,
2020
, “
An Alternative Formulation for Modeling Self-Excited Oscillations of Rotary Drilling Systems
,”
J. Sound Vib.
,
474
, p.
115241
.
34.
Bale
,
D. S.
,
Leveque
,
R. J.
,
Mitran
,
S.
, and
Rossmanith
,
J. A.
,
2003
, “
A Wave Propagation Method for Conservation Laws and Balance Laws With Spatially Varying Flux Functions
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
955
978
.
35.
LeVeque
,
R. J.
,
2002
,
Finite Volume Methods for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.