Abstract

Wear mechanisms taking place during machining strongly affect the overall process reliability, product quality, and production costs. It is necessary to have useful monitoring techniques for monitoring the wear trend during the process and to identify wearing phenomena occurring during the evolution of the process. In order to get a reliable tool, it is necessary to identify and distinguish the contributing factors and wear mechanisms happening during machining. In this paper, an acoustic emission sensor has been used to identify characteristic features pertaining different wear mechanism displayed during turning of waspaloy. The methodology used to distinguish the contributing elements was developed coupling turning tests with corresponding tribological experiments so that clear evidences on different contributions were identified showing a useful tool for industrial and research applications.

References

1.
Maculotti
,
G.
,
Goti
,
E.
,
Genta
,
G.
,
Mazza
,
L.
, and
Galetto
,
M.
,
2022
, “
Uncertainty-Based Comparison of Conventional and Surface Topography-Based Methods for Wear Volume Evaluation in Pin-on-Disc Tribological Test
,”
Tribol. Int.
,
165
,
107260
.
2.
Zum Gahr
,
K.
,
1987
,
Microstructure and Wear of Materials
, 1st ed., Vol. 10,
Elsevier Science Publishers
,
North Holland
, Tribology Series.
3.
Dolinšek
,
S.
, and
Kopač
,
J.
,
1999
, “
Acoustic Emission Signals for Tool Wear Identification
,”
Wear
,
225–229
(
Part 1
), pp.
295
303
.
4.
Shaw
,
M. C.
,
Thurman
,
A. L.
, and
Ahlgren
,
H. J.
,
1966
, “
A Plasticity Problem Involving Plane Strain and Plane Stress Simultaneously: Groove Formation in the Machining of High-Temperature Alloys
,”
ASME J. Manuf. Sci. Eng. Trans.
,
88
(
2
), pp.
142
146
.
5.
Mesa G.
,
D. H.
,
Vásquez-Chacón
,
I. A.
,
Gómez–Guarneros
,
M. A.
,
Sanchez-Tizapantzi
,
P.
, and
Gallardo-Hernández
,
E. A.
,
2022
, “
A Pin-on-Disk Wear Map of Rail and Wheel Materials From Different Standards
,”
Mater. Lett.
,
307
,
131021
.
6.
Olovsjö
,
S.
,
Wretland
,
A.
, and
Sjöberg
,
G.
,
2010
, “
The Effect of Grain Size and Hardness of Waspaloy on the Wear of Cemented Carbide Tools
,”
Int. J. Adv. Manuf. Technol.
,
50
.
7.
Yıldırım
,
Ç. V.
,
Kıvak
,
T.
, and
Erzincanlı
,
F.
,
2019
, “
Influence of Different Cooling Methods on Tool Life, Wear Mechanisms and Surface Roughness in the Milling of Nickel-Based Waspaloy With WC Tools
,”
Arab. J. Sci. Eng.
,
44
(
9
),
7979
7995
.
8.
Deshpande
,
P.
,
Pandiyan
,
V.
,
Meylan
,
B.
, and
Wasmer
,
K.
,
2021
, “
Acoustic Emission and Machine Learning Based Classification of Wear Generated Using a Pin-on-Disc Tribometer Equipped With a Digital Holographic Microscope
,”
Wear
,
476
,
203622
.
9.
Dimla Snr
,
D. E.
,
2000
, “
Sensor Signals for Tool-Wear Monitoring in Metal Cutting Operations—A Review of Methods
,”
Int. J. Mach. Tools Manuf.
,
40
.
10.
Caruso
,
S.
,
Umbrello
,
D.
,
Outeiro
,
J. C.
,
Filice
,
L.
, and
Micari
,
F.
,
2011
, “
An Experimental Investigation of Residual Stresses in Hard Machining of AISI 52100 Steel
,”
Proc. Eng.
,
19
,
67
72
.
11.
Del Prete
,
A.
,
Filice
,
L.
, and
Umbrello
,
D.
,
2013
, “
Numerical Simulation of Machining Nickel-Based Alloys
,”
Proc. CIRP
,
8
, pp.
540
545
.
12.
Bukkapatnam
,
S. T. S.
,
Kumara
,
S. R. T.
, and
Lakhtakia
,
A.
,
1999
, “
Analysis of Acoustic Emission Signals in Machining
,”
ASME J. Manuf. Sci. Eng. Trans.
,
121
(
4
), pp.
568
576
.
13.
Hutton
,
D. V.
, and
Hu
,
F.
,
1999
, “
Acoustic Emission Monitoring of Tool Wear in End-Milling Using Time-Domain Averaging
,”
ASME J. Manuf. Sci. Eng.
,
121
(
1
), pp.
8
12
.
14.
Wang
,
Z.
,
Chegdani
,
F.
,
Yalamarti
,
N.
,
Takabi
,
B.
,
Tai
,
B.
,
El Mansori
,
M.
, and
Bukkapatnam
,
S.
,
2020
, “
Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031003
.
15.
Wang
,
L.
, and
Wood
,
R. J. K.
,
2009
, “
Acoustic Emissions From Lubricated Hybrid Contacts
,”
Tribol. Int.
,
42
(
11–12
).
16.
Löhr
,
M.
,
Spaltmann
,
D.
,
Binkowski
,
S.
,
Santner
,
E.
, and
Woydt
,
M.
,
2006
, “
In Situ Acoustic Emission for Wear Life Detection of DLC Coatings During Slip-Rolling Friction
,”
Wear
,
260
.
17.
Cho
,
C. W.
, and
Lee
,
Y. Z.
,
2000
, “
Wear-Life Evaluation of CrN-Coated Steels Using Acoustic Emission Signals
,”
Surf. Coat. Technol.
,
127
(
1
).
18.
Haas
,
M.
,
El Syaad
,
K.
,
Cihak-Bayr
,
U.
,
Pauschitz
,
A.
, and
Gröschl
,
M.
,
2020
, “
Examination of Undisturbed Acoustic Emission Generated by Experimentally Modelled Two-Body Abrasive Wear Events
,”
Tribol. Int.
,
141
.
19.
Haas
,
M.
,
Cihak-Bayr
,
U.
,
Tomastik
,
C.
,
Jech
,
M.
, and
Gröschl
,
M.
,
2018
, “
Primary Calibration by Reciprocity Method of High-Frequency Acoustic-Emission Piezoelectric Transducers
,”
J. Acoust. Soc. Am.
,
143
(
6
),
3557
3562
.
20.
Geng
,
Z.
,
Puhan
,
D.
, and
Reddyhoff
,
T.
,
2019
, “
Using Acoustic Emission to Characterize Friction and Wear in Dry Sliding Steel Contacts
,”
Tribol. Int.
,
134
.
21.
Feng
,
P.
,
Borghesani
,
P.
,
Smith
,
W. A.
, and
Peng
,
Z.
,
2020
, “
Model-Based Surface Roughness Estimation Using Acoustic Emission Signals
,”
Tribol. Int.
,
144
.
22.
Stuhr
,
B.
, and
Liu
,
R.
,
2022
, “
A Flexible Similarity-Based Algorithm for Tool Condition Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
144
(
3
), p.
031010
.
23.
Dolinšek
,
S.
, and
Kopač
,
J.
,
1999
, “
Acoustic Emission Signals for Tool Wear Identification
,”
Wear
, pp.
225
229
.
24.
Ahmed
,
Y. S.
,
Arif
,
A. F. M.
, and
Veldhuis
,
S. C.
,
2020
, “
Application of the Wavelet Transform to Acoustic Emission Signals for Built-Up Edge Monitoring in Stainless Steel Machining
,”
Measurement
,
154
.
25.
Pandiyan
,
V.
, and
Tjahjowidodo
,
T.
,
2019
, “
Use of Acoustic Emissions to Detect Change in Contact Mechanisms Caused by Tool Wear in Abrasive Belt Grinding Process
,”
Wear
, pp.
436
437
.
26.
Imbrogno
,
S.
,
Rinaldi
,
S.
,
Umbrello
,
D.
,
Filice
,
L.
,
Franchi
,
R.
, and
Del Prete
,
A.
,
2018
, “
A Physically Based Constitutive Model for Predicting the Surface Integrity in Machining of Waspaloy
,”
Mater. Des.
,
152
,
140
155
.
27.
Bhuiyan
,
M. S. H.
,
Choudhury
,
I. A.
, and
Nukman
,
Y.
,
2012
, “
An Innovative Approach to Monitor the Chip Formation Effect on Tool State Using Acoustic Emission in Turning
,”
Int. J. Mach. Tools Manuf.
,
58
.
28.
Twardowski
,
P.
,
Tabaszewski
,
M.
,
Wiciak-Pikuła
,
M.
, and
Felusiak-Czyryca
,
A.
,
2021
, “
Identification of Tool Wear Using Acoustic Emission Signal and Machine Learning Methods
,”
Precis. Eng.
,
72
,
738
744
.
29.
Kishawy
,
H. A.
,
Hega
,
H.
,
Umer
,
U.
, and
Mohany
,
A.
, “
Application of Acoustic Emissions in Machining Processes: Analysis and Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
98
.
30.
Papacharalampopoulos
,
A.
,
Stavropoulos
,
P.
,
Doukas
,
C.
,
Foteinopoulos
,
P.
, and
Chryssolouris
,
G.
,
2013
, “
Acoustic Emission Signal Through Turning Tools: A Computational Study
,”
Proc. CIRP
,
8
,
426
431
.
31.
Hase
,
A.
,
Mishina
,
H.
, and
Wada
,
M.
,
2012
, “
Correlation Between Features of Acoustic Emission Signals and Mechanical Wear Mechanisms
,”
Wear
, pp.
292
293
.
32.
Haas
,
M.
,
El Syaad
,
K.
,
Cihak-Bayr
,
U.
,
Pauschitz
,
A.
, and
Gröschl
,
M.
,
2020
, “
Examination of Undisturbed Acoustic Emission Generated by Experimentally Modelled Two-Body Abrasive Wear Events
,”
Tribol. Int.
,
141
,
105912
.
33.
Bhuiyan
,
M. S. H.
,
Choudhury
,
I. A.
,
Dahari
,
M.
,
Nukman
,
Y.
, and
Dawal
,
S. Z.
,
2016
, “
Application of Acoustic Emission Sensor to Investigate the Frequency of Tool Wear and Plastic Deformation in Tool Condition Monitoring
,”
Measurement
,
92
.
You do not currently have access to this content.