Abstract

Particle packing densification due to vibrations is a common process that occurs in many industrial applications and is beneficial for achieving better mechanical properties in powder metallurgy. However, most of the research up to this point was focused on vibration compaction of uniform-sized or binary particle mixtures, while most actual commercial powders consist of particles of variable sizes. In this work, the packing of multi-sized sphere mixtures under horizontal vibrations is simulated with the help of the discrete element method (DEM). The variations of total and local packing density with vibrations and particle size were investigated. The simulation results suggest that there are optimal values for the two vibration parameters at which the closest packing is obtained. Further increase in the particle size decreases the density and slightly shifts these peaks to the lower values of vibrations. Local density values are quite uniform at the optimal vibration parameters, but the deviations become higher when frequency or amplitude is too low or high. With an increase in particle size, these trends become less profound and more deviated. The investigations of effects of size can help in predicting optimal parameters and density values for experimental studies. These developments are similar to those for uniform and binary particle assemblies and correlate with experimental and numerical studies from the literature. The results can be helpful in carefully choosing the particle mixture properties and vibration conditions for actual manufacturing.

References

1.
Kumar
,
S. V.
, and
Santhanam
,
M.
,
2003
, “
Particle Packing Theories and Their Application in Concrete Mixture Proportioning: A Review
,”
Indian Concr. J.
,
77
(
9
), pp.
1324
1331
.
2.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Numerical Simulation of Random Packing of Spherical Particles for Powder-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031004
.
3.
Scott
,
G. D.
,
1960
, “
Packing of Spheres: Packing of Equal Spheres
,”
Nature
,
188
(
4754
), pp.
908
909
.
4.
Abedini
,
R.
,
Abdullah
,
A.
, and
Alizadeh
,
Y.
,
2017
, “
Ultrasonic Assisted Hot Metal Powder Compaction
,”
Ultrason. Sonochem.
,
38
(
1
), pp.
704
710
.
5.
Suzuki
,
H. Y.
, and
Miyano
,
Y.
,
2016
, “
Development of All-Ceramic Artificial Teeth Using a High-Speed Centrifugal Compaction Process With a 3D Printer
,”
Funtai Oyobi Fummatsu Yakin/J. Jp Soc. Powder Powder Metall.
,
63
(
7
), pp.
524
529
.
6.
Gain
,
A. K.
,
Song
,
H. Y.
, and
Lee
,
B. T.
,
2006
, “
Microstructure and Mechanical Properties of Porous Yttria Stabilized Zirconia Ceramic Using Poly Methyl Methacrylate Powder
,”
Scr. Mater.
,
54
(
12
), pp.
2081
2085
.
7.
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2003
, “
Effect of Material Properties on the Packing of Fine Particles
,”
J. Appl. Phys.
,
94
(
5
), pp.
3025
3034
.
8.
Cheng
,
Y.
,
Guo
,
S.
, and
Lai
,
H.
,
1999
, “
Computer Simulation of Random Packing of Spherical Particles
,”
Beijing Keji Daxue Xuebao/J. Univ. Sci. Technol. Beijing
,
21
(
4
), pp.
387
391
.
9.
Gilabert
,
F. A.
,
Roux
,
J.
, and
Castellanos
,
A.
,
2007
, “
Discrete Numerical Simulation of a Model Cohesive Powder : Packing Geometry, Discrete Numerical Simulation of a Model Cohesive Powder : Packing Geometry, Micro- and Macro-Mechanics
”.
10.
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2000
, “
Computer Simulation of the Packing of Fine Particles
,”
Phys. Rev. E
,
62
(
3 B
), pp.
3900
3908
.
11.
Yi
,
L. Y.
,
Dong
,
K. J.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2011
, “
Coordination Number of the Packing of Ternary Mixtures of Spheres: Dem Simulations Versus Measurements
,”
Ind. Eng. Chem. Res.
,
50
(
14
), pp.
8773
8785
.
12.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2017
, “
Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081019
.
13.
Jia
,
T.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2012
, “
Simulation of Granular Packing of Particles With Different Size Distributions
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
172
180
.
14.
Dou
,
X.
,
Mao
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Effects of Contact Force Model and Size Distribution on Microsized Granular Packing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021003
.
15.
Shi
,
Y.
, and
Zhang
,
Y.
,
2008
, “
Simulation of Random Packing of Spherical Particles With Different Size Distributions
,”
Appl. Phys. A: Mater. Sci. Process.
,
92
(
3
), pp.
621
626
.
16.
Tayeb
,
R.
,
Dou
,
X.
,
Mao
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Analysis of Cohesive Microsized Particle Packing Structure Using History-Dependent Contact Models
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041005
.
17.
Theuerkauf
,
J.
,
Witt
,
P.
, and
Schwesig
,
D.
,
2006
, “
Analysis of Particle Porosity Distribution in Fixed Beds Using the Discrete Element Method
,”
Powder Technol.
,
165
(
2
), pp.
92
99
.
18.
Jia
,
X.
,
Caulkin
,
R.
,
Williams
,
R. A.
,
Zhou
,
Z. Y.
, and
Yu
,
A. B.
,
2010
, “
The Role of Geometric Constraints in Random Packing of Non-Spherical Particles
,”
EPL
,
92
(
6
), p.
68005
.
19.
Xu
,
J. Q.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2004
, “
Packing Structure of Cohesive Spheres
,”
Phys. Rev. E
,
69
(
31
), p.
032301
.
20.
Feng
,
C. L.
, and
Yu
,
A. B.
,
1998
, “
Effect of Liquid Addition on the Packing of Mono-Sized Coarse Spheres
,”
Powder Technol.
,
99
(
1
), pp.
22
28
.
21.
Zou
,
R. P.
,
Feng
,
C. L.
, and
Yu
,
A. B.
,
2001
, “
Packing Density of Binary Mixtures of Wet Spheres
,”
J. Am. Ceram. Soc.
,
84
(
3
), pp.
504
508
.
22.
Zou
,
R. P.
,
Xu
,
J. Q.
,
Feng
,
C. L.
,
Yu
,
A. B.
,
Johnston
,
S.
, and
Standish
,
N.
,
2003
, “
Packing of Multi-Sized Mixtures of Wet Coarse Spheres
,”
Powder Technol.
,
130
(
1–3
), pp.
77
83
.
23.
Yu
,
A. B.
,
An
,
X. Z.
,
Zou
,
R. P.
,
Yang
,
R. Y.
, and
Kendall
,
K.
,
2006
, “
Self-Assembly of Particles for Densest Packing by Mechanical Vibration
,”
Phys. Rev. Lett.
,
97
(
26
), p.
265501
.
24.
An
,
X.
, and
Li
,
C.
,
2013
, “
Experiments on Densifying Packing of Equal Spheres by Two-Dimensional Vibration
,”
Particuology
,
11
(
6
), pp.
689
694
.
25.
An
,
X. Z.
,
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2008
, “
Effect of Vibration Condition and Inter-Particle Frictions on the Packing of Uniform Spheres
,”
Powder Technol.
,
188
(
2
), pp.
102
109
.
26.
Li
,
C. X.
,
An
,
X. Z.
,
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2011
, “
Experimental Study on the Packing of Uniform Spheres Under Three-Dimensional Vibration
,”
Powder Technol.
,
208
(
3
), pp.
617
622
.
27.
Hettiarachchi
,
H. A. C. K.
, and
Mampearachchi
,
W. K.
,
2018
, “
Effect of Vibration Frequency, Size Ratio and Large Particle Volume Fraction on Packing Density of Binary Spherical Mixtures
,”
Powder Technol.
,
336
(
1
), pp.
150
160
.
28.
An
,
X.
,
Li
,
C.
, and
Qian
,
Q.
,
2016
, “
Experimental Study on the 3D Vibrated Packing Densification of Binary Sphere Mixtures
,”
Particuology
,
27
(
1
), pp.
110
114
.
29.
An
,
X.
,
Huang
,
F.
,
Dong
,
K.
, and
Yang
,
X.
,
2018
, “
DEM Simulation of Binary Sphere Packing Densification Under Vertical Vibration
,”
Part. Sci. Technol.
,
36
(
6
), pp.
672
680
.
30.
Amirifar
,
R.
,
Dong
,
K.
,
Zeng
,
Q.
, and
An
,
X.
,
2018
, “
Self-Assembly of Granular Spheres Under One-Dimensional Vibration
,”
Soft Matter
,
14
(
48
), pp.
9856
9869
.
31.
Amirifar
,
R.
,
Dong
,
K.
,
Zeng
,
Q.
,
An
,
X.
, and
Yu
,
A.
,
2021
, “
Effect of Vibration Mode on Self-Assembly of Granular Spheres Under Three-Dimensional Vibration
,”
Powder Technol.
,
380
(
1
), pp.
47
58
.
32.
Qian
,
Q.
,
Wang
,
L.
,
An
,
X.
,
Wu
,
Y.
,
Wang
,
J.
,
Zhao
,
H.
, and
Yang
,
X.
,
2018
, “
DEM Simulation on the Vibrated Packing Densification of Mono-Sized Equilateral Cylindrical Particles
,”
Powder Technol.
,
325
(
1
), pp.
151
160
.
33.
Mathonnet
,
J. E.
,
Sornay
,
P.
,
Nicolas
,
M.
, and
Dalloz-Dubrujeaud
,
B.
,
2017
, “
Compaction of Noncohesive and Cohesive Granular Materials Under Vibrations: Experiments and Stochastic Model
,”
Phys. Rev. E
,
95
(
4
), p.
042904
. .
34.
Gan
,
J.
, and
Yu
,
A.
,
2020
, “
DEM Study on the Packing Density and Randomness for Packing of Ellipsoids
,”
Powder Technol.
,
361
(
1
), pp.
424
434
.
35.
Du
,
W.
,
Ren
,
X.
,
Chen
,
Y.
,
Ma
,
C.
,
Radovic
,
M.
, and
Pei
,
Z.
,
2018
, “
Model Guided Mixing of Ceramic Powders With Graded Particle Sizes in Binder Jetting Additive Manufacturing
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018
,
2018
, Vol. 1.
36.
Du
,
W.
,
Roa
,
J.
,
Hong
,
J.
,
Liu
,
Y.
,
Pei
,
Z.
, and
Ma
,
C.
,
2021
, “
Binder Jetting Additive Manufacturing: Effect of Particle Size Distribution on Density
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091002
.
37.
Jia
,
T.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2011
, “
Dynamic Simulation of Particle Packing With Different Size Distributions
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021011
.
38.
Smirnov
,
A. V.
,
Martyanov
,
M. M.
,
Omarov
,
A. U.
,
Ponomarev
,
S. G.
, and
Shlyapin
,
A. D.
,
2019
, “
Study of the Effect of Vibrocompaction Modes, Shape of Particles and Their Size Distribution on Packing Density
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
479
(
1
), p.
012087
.
39.
Zhang
,
Z.
,
Ye
,
W. M.
,
Liu
,
Z. R.
,
Chen
,
B.
, and
Cui
,
Y. J.
,
2018
, “
Influences of PSD Curve and Vibration on the Packing Dry Density of Crushed Bentonite Pellet Mixtures
,”
Constr. Build. Mater.
,
185
(
1
), pp.
246
255
.
40.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
41.
Kloss
,
C.
, and
Goniva
,
C.
,
2011
,
Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling
, 1st ed., Vol.
2
,
John Wiley and Sons Inc.
,
Hoboken, NJ
, pp.
781
788
.
42.
Di Renzo
,
A.
, and
Paolo Di Maio
,
F.
,
2005
, “
An Improved Integral Non-Linear Model for the Contact of Particles in Distinct Element Simulations
,”
Chem. Eng. Sci.
,
60
(
5
), pp.
1303
1312
.
43.
Iwashita
,
K.
, and
Oda
,
M.
,
2000
, “
Micro-Deformation Mechanism of Shear Banding Process Based on Modified Distinct Element Method
,”
Powder Technol.
,
109
(
1–3
), pp.
192
205
.
44.
Wu
,
Y.
,
An
,
X.
, and
Yu
,
A. B.
,
2017
, “
DEM Simulation of Cubical Particle Packing Under Mechanical Vibration
,”
Powder Technol.
,
314
(
1
), pp.
89
101
.
45.
Kovalev
,
O. B.
, and
Kovaleva
,
I. O.
,
2014
, “
Modeling of the Random Packing of a Loose Layer of Polydisperse Spherical Particles
,”
ASME J. Appl. Mech.
,
55
(
4
), pp.
709
717
.
46.
Tai
,
C. H.
, and
Hsiau
,
S. S.
,
2004
, “
Dynamic Behaviors of Powders in a Vibrating Bed
,”
Powder Technol.
,
139
(
3
), pp.
221
232
.
47.
An
,
X. Z.
,
Li
,
C. X.
,
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2009
, “
Experimental Study of the Packing of Mono-Sized Spheres Subjected to One-Dimensional Vibration
,”
Powder Technol.
,
196
(
1
), pp.
50
55
.
You do not currently have access to this content.