Abstract

The macro-porous ceramics has promising durability and thermal insulation performance. As porous ceramics find more and more applications across many industries, a cost-effective and scalable additive manufacturing technique for fabricating macro-porous ceramics is highly desirable. Herein, we reported a facile additive manufacturing approach to fabricate porous ceramics and control the printed porosity. Several printable ceramic inks were prepared, and the foaming agent was added to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. A set of experimental studies were performed to optimize the printing quality. The results revealed the optimal process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enables the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics possessed enhanced durability with the addition of fiber. With a high-fidelity three-dimensional (3D) printing process and the precise controllability of the porosity, we showed that the printed samples exhibited a remarkably low thermal conductivity and durable mechanical strength.

References

1.
Wu
,
Z. S.
,
Winter
,
A.
,
Chen
,
L.
,
Sun
,
Y.
,
Turchanin
,
A.
,
Feng
,
X.
, and
Müllen
,
K.
,
2012
, “
Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors
,”
Adv. Mater.
,
24
(
37
), pp.
5130
5135
.
2.
Zhao
,
J.
,
Zhang
,
Y.
,
Zhao
,
X.
,
Wang
,
R.
,
Xie
,
J.
,
Yang
,
C.
,
Wang
,
J.
,
Zhang
,
Q.
,
Li
,
L.
,
Lu
,
C.
, and
Yao
,
Y.
,
2019
, “
Direct Ink Writing of Adjustable Electrochemical Energy Storage Device With High Gravimetric Energy Densities
,”
Adv. Funct. Mater.
,
29
(
26
), p.
1900809
.
3.
Zhao
,
S.
,
Siqueira
,
G.
,
Drdova
,
S.
,
Norris
,
D.
,
Ubert
,
C.
,
Bonnin
,
A.
,
Galmarini
,
S.
,
Ganobjak
,
M.
,
Pan
,
Z.
, and
Brunner
,
S.
,
2020
, “
Additive Manufacturing of Silica Aerogels
,”
Nature
,
584
(
7821
), pp.
387
392
.
4.
Bertino
,
M.
,
2018
, “
Rapid Fabrication of Hybrid Aerogels and 3D Printed Porous Materials
,”
J. Sol-Gel Sci. Technol.
,
86
(
2
), pp.
239
254
.
5.
Liu
,
Z.
,
Zhan
,
J.
,
Fard
,
M.
, and
Davy
,
J. L.
,
2016
, “
Acoustic Properties of a Porous Polycarbonate Material Produced by Additive Manufacturing
,”
Mater. Lett.
,
181
, pp.
296
299
.
6.
Cao
,
L.
,
Fu
,
Q.
,
Si
,
Y.
,
Ding
,
B.
, and
Yu
,
J.
,
2018
, “
Porous Materials for Sound Absorption
,”
Compos. Commun.
,
10
, pp.
25
35
.
7.
An
,
L.
,
Liang
,
B.
,
Guo
,
Z.
,
Wang
,
J.
,
Li
,
C.
,
Huang
,
Y.
,
Hu
,
Y.
,
Li
,
Z.
,
Armstrong
,
J. N.
, and
Zhou
,
C.
,
2021
, “
Wearable Aramid–Ceramic Aerogel Composite for Harsh Environment
,”
Adv. Eng. Mater.
,
23
(
3
), p.
2001169
.
8.
Du
,
X.
,
Fu
,
S.
, and
Zhu
,
Y.
,
2018
, “
3D Printing of Ceramic-Based Scaffolds for Bone Tissue Engineering: An Overview
,”
J. Mater. Chem. B
,
6
(
27
), pp.
4397
4412
.
9.
Song
,
X.
,
Zhang
,
Z.
,
Chen
,
Z.
, and
Chen
,
Y.
,
2017
, “
Porous Structure Fabrication Using a Stereolithography-Based Sugar Foaming Method
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031015
.
10.
Hwa
,
L. C.
,
Rajoo
,
S.
,
Noor
,
A. M.
,
Ahmad
,
N.
, and
Uday
,
M.
,
2017
, “
Recent Advances in 3D Printing of Porous Ceramics: A Review
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
6
), pp.
323
347
.
11.
Zhang
,
Q.
,
Zhang
,
F.
,
Medarametla
,
S. P.
,
Li
,
H.
,
Zhou
,
C.
, and
Lin
,
D.
,
2016
, “
3D Printing of Graphene Aerogels
,”
Small
,
12
(
13
), pp.
1702
1708
.
12.
M’barki
,
A.
,
Bocquet
,
L.
, and
Stevenson
,
A.
,
2017
, “
Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing
,”
Sci. Rep.
,
7
(
1
), pp.
1
10
.
13.
Li
,
V. C.-F.
,
Dunn
,
C. K.
,
Zhang
,
Z.
,
Deng
,
Y.
, and
Qi
,
H. J.
,
2017
, “
Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
14.
Guo
,
Z.
,
Yang
,
R.
,
Wang
,
T.
,
An
,
L.
,
Ren
,
S.
, and
Zhou
,
C.
,
2021
, “
Cost-Effective Additive Manufacturing of Ambient Pressure-Dried Silica Aerogel
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011011
.
15.
Hu
,
F.
,
Wu
,
S.
, and
Sun
,
Y.
,
2019
, “
Hollow-Structured Materials for Thermal Insulation
,”
Adv. Mater.
,
31
(
38
), p.
1801001
.
16.
Hu
,
L.
,
Wang
,
C.-A.
, and
Huang
,
Y.
,
2011
, “
Porous YSZ Ceramics With Unidirectionally Aligned Pore Channel Structure: Lowering Thermal Conductivity by Silica Aerogels Impregnation
,”
J. Eur. Ceram. Soc.
,
31
(
15
), pp.
2915
2922
.
17.
Sun
,
Z.
,
Lu
,
C.
,
Fan
,
J.
, and
Yuan
,
F.
,
2016
, “
Porous Silica Ceramics With Closed-Cell Structure Prepared by Inactive Hollow Spheres for Heat Insulation
,”
J. Alloys Compd.
,
662
, pp.
157
164
.
18.
Østergaard
,
M. B.
,
Cai
,
B.
,
Petersen
,
R. R.
,
König
,
J.
,
Lee
,
P. D.
, and
Yue
,
Y.
,
2019
, “
Impact of Pore Structure on the Thermal Conductivity of Glass Foams
,”
Mater. Lett.
,
250
, pp.
72
74
.
19.
Reichenauer
,
G.
,
Heinemann
,
U.
, and
Ebert
,
H.-P.
,
2007
, “
Relationship Between Pore Size and the Gas Pressure Dependence of the Gaseous Thermal Conductivity
,”
Colloids Surf., A
,
300
(
1–2
), pp.
204
210
.
20.
Román-Manso
,
B.
,
Muth
,
J.
,
Gibson
,
L. J.
,
Ruettinger
,
W.
, and
Lewis
,
J. A.
,
2021
, “
Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams
,”
ACS Appl. Mater. Interfaces
,
13
(
7
), pp.
8976
8984
.
21.
Muth
,
J. T.
,
Dixon
,
P. G.
,
Woish
,
L.
,
Gibson
,
L. J.
, and
Lewis
,
J. A.
,
2017
, “
Architected Cellular Ceramics With Tailored Stiffness via Direct Foam Writing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
8
), pp.
1832
1837
.
22.
Huang
,
K.
,
Elsayed
,
H.
,
Franchin
,
G.
, and
Colombo
,
P.
,
2020
, “
3D Printing of Polymer-Derived SiOC With Hierarchical and Tunable Porosity
,”
Addit. Manuf.
,
36
, p.
101549
.
23.
Chan
,
S. S.
,
Sesso
,
M. L.
, and
Franks
,
G. V.
,
2020
, “
Direct Ink Writing of Hierarchical Porous Alumina-Stabilized Emulsions: Rheology and Printability
,”
J. Am. Ceram. Soc.
,
103
(
10
), pp.
5554
5566
.
24.
Minas
,
C.
,
Carnelli
,
D.
,
Tervoort
,
E.
, and
Studart
,
A. R.
,
2016
, “
3D Printing of Emulsions and Foams Into Hierarchical Porous Ceramics
,”
Adv. Mater.
,
28
(
45
), pp.
9993
9999
.
25.
Seitz
,
H.
,
Deisinger
,
U.
,
Leukers
,
B.
,
Detsch
,
R.
, and
Ziegler
,
G.
,
2009
, “
Different Calcium Phosphate Granules for 3-D Printing of Bone Tissue Engineering Scaffolds
,”
Adv. Eng. Mater.
,
11
(
5
), pp.
B41
B46
.
26.
An
,
L.
,
Wang
,
J.
,
Petit
,
D.
,
Armstrong
,
J. N.
,
Hanson
,
K.
,
Hamilton
,
J.
,
Souza
,
M.
,
Zhao
,
D.
,
Li
,
C.
, and
Liu
,
Y.
,
2020
, “
An all-Ceramic, Anisotropic, and Flexible Aerogel Insulation Material
,”
Nano Lett.
,
20
(
5
), pp.
3828
3835
.
27.
Franchin
,
G.
,
Scanferla
,
P.
,
Zeffiro
,
L.
,
Elsayed
,
H.
,
Baliello
,
A.
,
Giacomello
,
G.
,
Pasetto
,
M.
, and
Colombo
,
P.
,
2017
, “
Direct Ink Writing of Geopolymeric Inks
,”
J. Eur. Ceram. Soc.
,
37
(
6
), pp.
2481
2489
.
28.
Kim
,
F.
,
Kwon
,
B.
,
Eom
,
Y.
,
Lee
,
J. E.
,
Park
,
S.
,
Jo
,
S.
,
Park
,
S. H.
,
Kim
,
B.-S.
,
Im
,
H. J.
, and
Lee
,
M. H.
,
2018
, “
3D Printing of Shape-Conformable Thermoelectric Materials Using all-Inorganic Bi 2 Te 3-Based Inks
,”
Nat. Energy
,
3
(
4
), pp.
301
309
.
29.
Tang
,
S.
,
Yang
,
L.
,
Li
,
G.
,
Liu
,
X.
, and
Fan
,
Z.
,
2019
, “
3D Printing of Highly-Loaded Slurries via Layered Extrusion Forming: Parameters Optimization and Control
,”
Addit. Manuf.
,
28
, pp.
546
553
.
30.
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Grotto
,
J.
, and
Lewis
,
J. A.
,
2018
, “
3D Printing of Customized Li-Ion Batteries With Thick Electrodes
,”
Adv. Mater.
,
30
(
16
), p.
1703027
.
31.
Comminal
,
R.
,
Serdeczny
,
M. P.
,
Pedersen
,
D. B.
, and
Spangenberg
,
J.
,
2019
, “
Motion Planning and Numerical Simulation of Material Deposition at Corners in Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
29
, p.
100753
.
32.
Hwang
,
S.-W.
,
Jung
,
H.-H.
,
Hyun
,
S.-H.
, and
Ahn
,
Y.-S.
,
2007
, “
Effective Preparation of Crack-Free Silica Aerogels via Ambient Drying
,”
J. Sol-Gel Sci. Technol.
,
41
(
2
), pp.
139
146
.
33.
Treuel
,
L.
,
Eslahian
,
K.
,
Docter
,
D.
,
Lang
,
T.
,
Zellner
,
R.
,
Nienhaus
,
K.
,
Nienhaus
,
G.
,
Stauber
,
R.
, and
Maskos
,
M.
,
2014
, “
Physicochemical Characterization of Nanoparticles and Their Behavior in the Biological Environment
,”
Phys. Chem. Chem. Phys.
,
16
(
29
), pp.
15053
15067
.
34.
Liu
,
W.
,
Yang
,
X.
,
Zhang
,
Y.
,
Xu
,
M.
, and
Chen
,
H.
,
2014
, “
Ultra-stable Two-Dimensional MoS 2 Solution for Highly Efficient Organic Solar Cells
,”
RSC Adv.
,
4
(
62
), pp.
32744
32748
.
35.
Zhang
,
S.
,
Lan
,
Q.
,
Liu
,
Q.
,
Xu
,
J.
, and
Sun
,
D.
,
2008
, “
Aqueous Foams Stabilized by Laponite and CTAB
,”
Colloids Surf., A
,
317
(
1–3
), pp.
406
413
.
36.
Hao
,
N.
,
Chen
,
X.
,
Jayawardana
,
K. W.
,
Wu
,
B.
,
Sundhoro
,
M.
, and
Yan
,
M.
,
2016
, “
Shape Control of Mesoporous Silica Nanomaterials Templated With Dual Cationic Surfactants and Their Antibacterial Activities
,”
Biomater. Sci.
,
4
(
1
), pp.
87
91
.
You do not currently have access to this content.