Abstract

Intermittent cutting characteristics of ultrasonic-assisted turning (UAT), compared with conventional turning (CT), has shown a significant enhancement in the machinability of hard-to-cut materials. The enhancement in machinability is associated with machining forces and friction characteristics of the process. The present article covers an analytical approach to predict the output responses such as machining forces and friction characteristics in UAT and CT processes. Specific cutting energy (SCE) for a particular work-piece material was considered to predict the output responses. The predictions were made by considering the conventional machining theories. Experiments for the UAT and the CT of SS 304 were carried out to validate the predicted model. The results from the analytical model showed that the shear angle increases and the tool work-piece contact ratio (TWCR) decrease with an increase in amplitude and frequency of vibration. The results obtained from the analytical model were found to be in close agreement with the experimental ones, with an approximate error of 2–20%.

References

1.
Thoe
,
T. B.
,
Aspinwall
,
D. K.
, and
Wise
,
M. L. H.
,
1998
, “
Review on Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
38
(
4
), pp.
239
255
.
2.
Nath
,
C.
, and
Rahman
,
M.
,
2008
, “
Effect of Machining Parameters in Ultrasonic Vibration Cutting
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
965
974
.
3.
Maurotto
,
A.
,
Muhammad
,
R.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
Enhanced Ultrasonically Assisted Turning of a b-Titanium Alloy
,”
Ultrasonics
,
53
(
7
), pp.
1242
1250
.
4.
Adnan
,
A. S.
, and
Subbiah
,
S.
,
2010
, “
Experimental Investigation of Transverse Vibration-Assisted Orthogonal Cutting of AL-2024
,”
Int. J. Mach. Tools Manuf.
,
50
(
3
), pp.
294
302
.
5.
Muhammad
,
R.
,
Hussain
,
M. S.
,
Maurotto
,
A.
,
Siemers
,
C.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2014
, “
Analysis of a Free Machining α+β Titanium Alloy Using Conventional and Ultrasonically Assisted Turning
,”
J. Mater. Process. Technol.
,
214
(
4
), pp.
906
915
.
6.
Xu
,
Y.
,
Zou
,
P.
,
He
,
Y.
,
Chen
,
S.
,
Tian
,
Y.
, and
Gao
,
X.
,
2017
, “
Comparative Experimental Research in Turning of 304 Austenitic Stainless Steel With and Without Ultrasonic Vibration
,”
Proc. IMechE Part C: J. Mech. Eng. Sci.
,
231
(
15
), pp.
2885
2901
.
7.
Bai
,
W.
,
Bisht
,
A.
,
Roy
,
A.
,
Suwas
,
S.
,
Sun
,
R.
, and
Silberschmidt
,
V. V.
,
2019
, “
Improvements of Machinability of Aerospace-Grade Inconel Alloys With Ultrasonically Assisted Hybrid Machining
,”
Int. J. Adv. Manuf. Technol.
,
101
, pp.
1143
1156
.
8.
Muhammad
,
R.
,
Maurotto
,
A.
,
Demiral
,
M.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2014
, “
Thermally Enhanced Ultrasonically Assisted Machining of Ti Alloy
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
2
), pp.
159
167
.
9.
Muhammad
,
R.
,
Ahmed
,
N.
,
Ullah
,
H.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2018
, “
Hybrid Machining Process: Experimental and Numerical Analysis of Hot Ultrasonically Assisted Turning
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
2173
2192
.
10.
Liu
,
G.
,
Shah
,
S.
, and
Özel
,
T.
,
2019
, “
Material Ductile Failure-Based Finite Element Simulations of Chip Serration in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041017
.
11.
Wang
,
B.
,
Liu
,
Z.
,
Song
,
Q.
,
Wan
,
Y.
, and
Ren
,
X.
,
2018
, “
A Modified Johnson–Cook Constitutive Model and Its Application to High Speed Machining of 7050-T7451 Aluminum Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011012
.
12.
Salehi
,
M.
,
Schmitz
,
T. L.
,
Copenhaver
,
R.
,
Haas
,
R.
, and
Ovtcharova
,
J.
,
2018
, “
Probabilistic Sequential Prediction of Cutting Force Using Kienzle Model in Orthogonal Turning Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011009
.
13.
Zhao
,
J.
,
Liu
,
Z.
,
Wang
,
B.
,
Cai
,
Y.
, and
Song
,
Q.
,
2020
, “
Analytical Prediction and Experimental Investigation of Burnishing Force in Rotary Ultrasonic Roller Burnishing Titanium Alloy Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031004
.
14.
Lotfi
,
M.
, and
Amini
,
S.
,
2016
, “
Effect of Ultrasonic Vibration on Frictional Behaviour of Tool-Chip Interface: Finite Element Analysis and Experimental Study
,”
Proc. IMechE Part B: J. Eng. Manuf.
,
232
(
7
), pp.
1
9
.
15.
Patil
,
S.
,
Joshi
,
S.
,
Tewari
,
A.
, and
Joshi
,
S. S.
,
2014
, “
Modelling and Simulation of Effect of Ultrasonic Vibrations on Machining of Ti6Al4V
,”
Ultrasonics
,
54
(
2
), pp.
694
705
.
16.
Amini
,
S.
, and
Kazemiyoun
,
M.
,
2014
, “
Effect of Ultrasonic Vibrations on Chip-Tool Contact Zone in Turning of AISI304
,”
Mater. Manuf. Proc.
,
29
(
5
), pp.
627
633
.
17.
Bai
,
W.
,
Roy
,
A.
,
Guo
,
L.
,
Xu
,
J.
, and
Silberschmidt
,
V. V.
,
2021
, “
Analytical Prediction of Shear Angle and Frictional Behaviour in Vibration-Assisted Cutting
,”
J. Manuf. Process.
,
62
, pp.
37
46
.
18.
Zhang
,
X.
,
Kumar
,
A. S.
,
Rahman
,
M.
,
Nath
,
C.
, and
Liu
,
K.
,
2012
, “
An Analytical Force Model for Orthogonal Elliptical Vibration Cutting Technique
,”
J. Manuf. Process.
,
14
(
3
), pp.
378
387
.
19.
Jamshidi
,
H.
, and
Nategh
,
M. J.
,
2013
, “
Theoretical and Experimental Investigation of the Frictional Behavior of the Tool–Chip Interface in Ultrasonic-Vibration Assisted Turning
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
1
7
.
20.
Verma
,
G. C.
,
Pandey
,
P. M.
, and
Dixit
,
U. S.
,
2018
, “
Modelling of Static Machining Force in Axial Ultrasonic-Vibration Assisted Milling Considering Acoustic Softening
,”
Int. J. Mech. Sci.
,
136
, pp.
1
16
.
21.
Airao
,
J.
,
Khanna
,
N.
,
Roy
,
A.
, and
Hegab
,
H.
,
2020
, “
Comprehensive Experimental Analysis and Sustainability Assessment of Machining Nimonic 90 Using Ultrasonic Assisted Turning Facility
,”
Int. J. Adv. Manuf. Technol.
,
109
(
5–6
), pp.
1447
1462
.
22.
Xiao
,
M.
,
Karube
,
S.
,
Soutome
,
T.
, and
Sato
,
K.
,
2002
, “
Analysis of Chatter Suppression in Vibration Cutting
,”
Int. J. Mach. Tools Manuf.
,
42
(
15
), pp.
1677
1685
.
23.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. App. Phys.
,
16
(
5
), pp.
267
275
.
24.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting
,”
J. App. Phys.
,
16
(
6
), pp.
318
324
.
25.
Oxley
,
P. L. B.
,
1989
,
Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood
,
Chichester
.
26.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principles
,
Oxford University Press
,
New York
.
27.
Kalpakjian
,
S.
,
Schmid
,
S. R.
, and
Sekar
,
K. S. V.
,
2014
,
Manufacturing Engineering and Technology
,
Pearson
,
Singapore
.
28.
Toropov
,
A.
, and
Ko
,
S.-L.
,
2007
, “
Prediction of Shear Angle for Continuous Orthogonal Cutting Using Thermo-Mechanical Constants of Work Material and Cutting Conditions
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
167
173
.
29.
Hill
,
R.
,
1956
,
The Mathematical Theory of Plasticity
,
Oxford-Clarendon Press
,
Oxford
.
30.
Trent
,
E. M.
, and
Wright
,
P. K.
,
2000
,
Metal Cutting
,
Butterworth-Heinemann Elsevier
,
Woburn, MA
.
31.
Oxley
,
P. L. B.
, and
Hastings
,
W. F.
,
1977
, “
Predicting the Strain Rate in the Zone of Intense Shear in Which the Chip is Formed in Machining From the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions
,”
Proc. R. Soc. Lond. A
,
356
(
1686
), pp.
395
410
.
32.
Boothroyd
,
G.
,
1963
, “
Temperatures in Orthogonal Metal Cutting
,”
Proc. Inst. Mech. Eng.
,
177
(
1
), pp.
789
810
.
33.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for
,”
Proceedings of 7th Int. Symp. Ballistics
,
The Hague
,
Apr. 19–21
, pp.
541
547
.
34.
Bai
,
W.
,
Sun
,
R.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2017
, “
Improved Analytical Prediction of Chip Formation in Orthogonal Cutting of Titanium Alloy Ti6Al4V
,”
Int. J. Mech. Sci.
,
133
, pp.
357
367
.
35.
Wright
,
P. K.
,
Horne
,
J. G.
, and
Tabor
,
D.
,
1979
, “
Boundary Conditions at the Chip-Tool Interface in Machining: Comparisons Between Seizure and Sliding Friction
,”
Wear
,
54
(
2
), pp.
371
390
.
36.
Zorev
,
N.
,
1963
, “
Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting
,”
Int. Res. Prod. Eng.
,
49
, pp.
143
152
.
37.
Roth
,
R. N.
, and
Oxley
,
P. L. B.
,
1972
, “
Slip-Line Field Analysis for Orthogonal Machining Based Upon Experimental Flow Fields
,”
J. Mech. Eng. Sci.
,
14
(
2
), pp.
85
97
.
38.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
(
4
), pp.
405
413
.
39.
Fatima
,
A.
, and
Mativenga
,
P. T.
,
2013
, “
A Review of Tool-Chip Contact Length Models in Machining and Future Direction for Improvement
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
227
(
3
), pp.
345
356
.
40.
Pittalà1
,
G. M.
, and
Monno
,
M.
,
2010
, “
Flow Stress Determination in Orthogonal Cutting Process Combining the Primary and the Secondary Shear Zones
,”
Int. J. Mater. Form.
,
3
(
S1
), pp.
483
486
.
41.
Guo
,
Y. B.
,
2002
, “
Mechanical Behaviour Characterization of the Secondary Shear Zone in Metal Cutting
,”
Trans. NAMRI/SME
,
30
, pp.
423
430
.
42.
Moufki
,
A.
,
Molinari
,
A.
, and
Dudzinski
,
D.
,
1998
, “
Modelling of Orthogonal Cutting With a Temperature Dependent Friction Law
,”
J. Mech. Phys. Solids
,
46
(
10
), pp.
2103
2138
.
43.
Childs
,
T.
,
Maekawa
,
K.
,
Obikawa
,
T.
, and
Yamane
,
Y.
,
2000
,
Metal Machining
,
Butterworth-Heinemann
,
Oxford
.
44.
Ozlu
,
E.
,
Molinari
,
A.
, and
Budak
,
E.
,
2010
, “
Two-Zone Analytical Contact Model Applied to Orthogonal Cutting
,”
Mach. Sci. Technol.
,
14
(
3
), pp.
323
343
.
45.
Chagas
,
G. M. P.
, and
Machado
,
I. F.
,
2015
, “
Numerical Model of Machining Considering the Effect of MnS Inclusions in an Austanitic Stainless Steel
,”
Proc. CIRP
,
31
, pp.
533
538
.
46.
Gao
,
J.
, and
Jin
,
X.
,
2019
, “
Effects of Ultrasonic Vibration Assistance on Chip Formation Mechanism in Cutting of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121007
.
47.
Khanna
,
N.
,
Airao
,
J.
,
Gupta
,
M. K.
,
Song
,
Q.
,
Liu
,
Z.
,
Mia
,
M.
,
Maruda
,
R.
, and
Krolczyk
,
G.
,
2019
, “
Optimisation of Power Consumption Associated With Surface Roughness in Ultrasonic Assisted Turning of Nimonic-90 Using Hybrid Particle Swarm-Simplex Method
,”
Materials
,
12
(
20
), p.
3418
.
You do not currently have access to this content.