Abstract

The deposition of new alloy to replace a worn or damaged surface layer is a common strategy for repairing or remanufacturing structural components. Solid-state methods, such as additive friction stir deposition (AFSD), mitigate the challenges associated with traditional fusion methods by depositing material at temperatures below the melting point. In this study, AFSD of aluminum alloy 6061-T6 was investigated as a means to fill machined grooves in a substrate of cast aluminum alloy Al-1.4Si-1.1Cu-1.5Mg-2.1Zn. The combination of machining and deposition simulate a repair in which damaged material is mechanically removed and then replaced using AFSD. Three groove geometries were evaluated by means of metallographic inspection and tensile and fatigue testing. For the process conditions and groove geometries used in this study, the effective repair depth was limited to 2.3–2.6 mm; below that depth, the interface between the filler and substrate materials exhibited poor bonding associated with insufficient shear deformation. Mechanical test data indicated that, under optimized processing conditions, the strength of the deposited filler alloy may approach that of the cast substrate. In addition, the fatigue life during fully reversed axial fatigue testing was 66% of that predicted from historical data for comparable stress amplitudes. The results suggest that there is potential to utilize AFSD of 6061 as a viable repair process for cast Al-1.4Si-1.1Cu-1.5Mg-2.1Zn and other comparable alloys.

References

1.
Shankar
,
K.
, and
Wu
,
W.
,
2002
, “
Effect of Welding and Weld Repair on Crack Propagation Behaviour in Aluminium Alloy 5083 Plates
,”
Mater. Des.
,
23
(
2
), pp.
201
208
.
2.
Li
,
L.
,
Liu
,
Z.
, and
Snow
,
M.
,
2006
, “
Effect of Defects on Fatigue Strength of GTAW Repaired Cast Aluminum Alloy
,”
Weld. J.
,
85
(
11
), p.
264
.
3.
Qi
,
S.
,
Wen
,
Q.
,
Ji
,
S.
,
Meng
,
X.
,
Wu
,
B.
, and
Qi
,
W.
,
2019
, “
New Technique of Radial-Additive Friction Stir Repairing for Exceeded Tolerance Holes
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4761
4771
.
4.
Phillips
,
B. J.
,
Avery
,
D. Z.
,
Liu
,
T.
,
Rodriguez
,
O. L.
,
Mason
,
C. J. T.
,
Jordon
,
J. B.
,
Brewer
,
L. N.
, and
Allison
,
P. G.
,
2019
, “
Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al–Mg–Si
,”
Materialia
,
7
, p.
100387
.
5.
Anderson-Wedge
,
K.
,
Avery
,
D. Z.
,
Daniewicz
,
S. R.
,
Sowards
,
J. W.
,
Allison
,
P. G.
,
Jordon
,
J. B.
, and
Amaro
,
R. L.
,
2021
, “
Characterization of the Fatigue Behavior of Additive Friction Stir-Deposition AA2219
,”
Int. J. Fatigue
,
142
, p.
105951
.
6.
Heidarzadeh
,
A.
,
Mironov
,
S.
,
Kaibyshev
,
R.
,
Çam
,
G.
,
Simar
,
A.
,
Gerlich
,
A.
,
Khodabakhshi
,
F.
, et al
,
2020
, “
Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution
,”
Prog. Mater. Sci.
,
117
, p.
100752
.
7.
Liu
,
F. C.
,
Hovanski
,
Y.
,
Miles
,
M. P.
,
Sorensen
,
C. D.
, and
Nelson
,
T. W.
,
2018
, “
A Review of Friction Stir Welding of Steels: Tool, Material Flow, Microstructure, and Properties
,”
J. Mater. Sci. Technol.
,
34
(
1
), pp.
39
57
.
8.
Khodabakhshi
,
F.
, and
Gerlich
,
A. P.
,
2018
, “
Potentials and Strategies of Solid-State Additive Friction-Stir Manufacturing Technology: A Critical Review
,”
J. Manuf. Process.
,
36
, pp.
77
92
.
9.
Palanivel
,
S.
, and
Mishra
,
R. S.
,
2017
, “
Building Without Melting: A Short Review of Friction-Based Additive Manufacturing Techniques
,”
Int. J. Addit. Subtract. Mater. Manuf.
,
1
(
1
), pp.
82
103
.
10.
Srivastava
,
M.
,
Rathee
,
S.
,
Maheshwari
,
S.
,
Noor Siddiquee
,
A.
, and
Kundra
,
T. K.
,
2019
, “
A Review on Recent Progress in Solid State Friction Based Metal Additive Manufacturing: Friction Stir Additive Techniques
,”
Crit. Rev. Solid State Mater. Sci.
,
44
(
5
), pp.
345
377
.
11.
Rivera
,
O. G.
,
Allison
,
P. G.
,
Brewer
,
L. N.
,
Rodriguez
,
O. L.
,
Jordon
,
J. B.
,
Liu
,
T.
,
Whittington
,
W. R.
, et al
,
2018
, “
Influence of Texture and Grain Refinement on the Mechanical Behavior of AA2219 Fabricated by High Shear Solid State Material Deposition
,”
Mater. Sci. Eng., A
,
724
, pp.
547
558
.
12.
Hang
,
Z. Y.
,
Jones
,
M. E.
,
Brady
,
G. W.
,
Griffiths
,
R. J.
,
Garcia
,
D.
,
Rauch
,
H. A.
,
Cox
,
C. D.
, and
Hardwick
,
N.
,
2018
, “
Non-Beam-Based Metal Additive Manufacturing Enabled by Additive Friction Stir Deposition
,”
Scr. Mater.
,
153
, pp.
122
130
.
13.
Avery
,
D. Z.
,
Rivera
,
O. G.
,
Mason
,
C. J. T.
,
Phillips
,
B. J.
,
Jordon
,
J. B.
,
Su
,
J.
,
Hardwick
,
N.
, and
Allison
,
P. G.
,
2018
, “
Fatigue Behavior of Solid-State Additive Manufactured Inconel 625
,”
JOM
,
70
(
11
), pp.
2475
2484
.
14.
Griffiths
,
R. J.
,
Perry
,
M. E.
,
Sietins
,
J. M.
,
Zhu
,
Y.
,
Hardwick
,
N.
,
Cox
,
C. D.
,
Rauch
,
H. A.
, and
Hang
,
Z. Y.
,
2019
, “
A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD
,”
J. Mater. Eng. Perform.
,
28
(
2
), pp.
648
656
.
15.
Schultz
,
J. P.
, and
Creehan
,
K. D.
,
2017
, “
Fabrication Tools for Exerting Normal Forces on Feedstock
,” US Patent No. 9,205,578 B2.
16.
Gerlich
,
A. P.
,
2017
, “
Critical Assessment 25: Friction Stir Processing, Potential and Problems
,”
Mater. Sci. Technol.
,
33
(
10
), pp.
1139
1144
.
17.
Garcia
,
D.
,
Hartley
,
W. D.
,
Rauch
,
H. A.
,
Griffiths
,
R. J.
,
Wang
,
R.
,
Kong
,
Z. J.
,
Zhu
,
Y.
, and
Hang
,
Z. Y.
,
2020
, “
In Situ Investigation Into Temperature Evolution and Heat Generation During Additive Friction Stir Deposition: A Comparative Study of Cu and Al-Mg-Si
,”
Addit. Manuf.
,
34
, p.
101386
.
18.
Griffiths
,
R. J.
,
Garcia
,
D.
,
Song
,
J.
,
Vasudevan
,
V. K.
,
Steiner
,
M. A.
,
Cai
,
W.
, and
Hang
,
Z. Y.
,
2021
, “
Solid-State Additive Manufacturing of Aluminum and Copper Using Additive Friction Stir Deposition: Process-Microstructure Linkages
,”
Materialia
,
15
, p.
100967
.
19.
Perry
,
M. E.
,
Griffiths
,
R. J.
,
Garcia
,
D.
,
Sietins
,
J. M.
,
Zhu
,
Y.
, and
Hang
,
Z. Y.
,
2020
, “
Morphological and Microstructural Investigation of the Non-Planar Interface Formed in Solid-State Metal Additive Manufacturing by Additive Friction Stir Deposition
,”
Addit. Manuf.
,
35
, p.
101293
.
20.
Michishita
,
Y.
,
Fujiya
,
Y.
, and
Katoh
,
J.
,
2009
, “
Friction Stir Processing of 316L Stainless Steel Plate
,”
Sci. Technol. Weld. Joining
,
14
(
3
), pp.
197
201
.
21.
Griffiths
,
R. J.
,
Petersen
,
D. T.
,
Garcia
,
D.
, and
Yu
,
H. Z.
,
2019
, “
Additive Friction Stir-Enabled Solid-State Additive Manufacturing for the Repair of 7075 Aluminum Alloy
,”
Appl. Sci.
,
9
(
17
), p.
3486
.
22.
ASTM B209M-14
,
2014
,
Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
,
ASTM International
,
West Conshohocken, PA
.
23.
ASTM B557-15
,
2015
,
Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
,
ASTM International
,
West Conshohocken, PA
.
24.
ASTM E466-15
,
2015
,
Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
25.
Çam
,
G.
,
2011
, “
Friction Stir Welded Structural Materials: Beyond Al-Alloys
,”
Int. Mater. Rev.
,
56
(
1
), pp.
1
48
.
26.
Rutherford
,
B. A.
,
Avery
,
D. Z.
,
Phillips
,
B. J.
,
Rao
,
H. M.
,
Doherty
,
K. J.
,
Allison
,
P. G.
,
Brewer
,
L. N.
, and
Jordon
,
J. B.
,
2020
, “
Effect of Thermomechanical Processing on Fatigue Behavior in Solid-State Additive Manufacturing of Al-Mg-Si Alloy
,”
Metals
,
10
(
7
), p.
947
.
27.
Oosterkamp
,
A. A. N. A.
,
Oosterkamp
,
L. D.
, and
Nordeide
,
A.
,
2004
, “
Kissing Bond Phenomena in Solid-State Welds of Aluminum Alloys
,”
Welding J.
,
83
(
8
), p.
225
.
28.
Nan
,
Z. H. O. U.
,
Song
,
D. F.
,
Qi
,
W. J.
,
Li
,
X. H.
,
Ji
,
Z. O. U.
, and
Attallah
,
M. M.
,
2018
, “
Influence of the Kissing Bond on the Mechanical Properties and Fracture Behaviour of AA5083-H112 Friction Stir Welds
,”
Mater. Sci. Eng. A
,
719
, pp.
12
20
.
29.
Yahr
,
G. T.
,
1997
, “
Fatigue Design Curves for 6061-T6 Aluminum
,”
ASME J. Pressure Vessel Technol.
,
119
(2), pp.
211
215
.
30.
Phillips
,
B. J.
,
Mason
,
C. J. T.
,
Beck
,
S. C.
,
Avery
,
D. Z.
,
Doherty
,
K. J.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2021
, “
Effect of Parallel Deposition Path and Interface Material Flow on Resulting Microstructure and Tensile Behavior of Al-Mg-Si Alloy Fabricated by Additive Friction Stir Deposition
,”
J. Mater. Process. Technol.
,
295
, p.
117169
.
31.
Feng
,
A. H.
,
Chen
,
D. L.
, and
Ma
,
Z. Y.
,
2010
, “
Microstructure and Low-Cycle Fatigue of a Friction-Stir-Welded 6061 Aluminum Alloy
,”
Metall. Mater. Trans. A
,
41
(
10
), pp.
2626
2641
.
32.
de Oliveira Miranda
,
A. C.
,
Gerlich
,
A.
, and
Walbridge
,
S.
,
2015
, “
Aluminum Friction Stir Welds: Review of Fatigue Parameter Data and Probabilistic Fracture Mechanics Analysis
,”
Eng. Fract. Mech.
,
147
, pp.
243
260
.
33.
Ranjan
,
R.
,
de Oliveira Miranda
,
A. C.
,
Guo
,
S. H.
,
Walbridge
,
S.
, and
Gerlich
,
A.
,
2019
, “
Fatigue Analysis of Friction Stir Welded Butt Joints Under Bending and Tension Load
,”
Eng. Fract. Mech.
,
206
, pp.
34
45
.
34.
Hartley
,
W. D.
,
Garcia
,
D.
,
Yoder
,
J. K.
,
Poczatek
,
E.
,
Forsmark
,
J. H.
,
Luckey
,
S. G.
,
Dillard
,
D. A.
, and
Hang
,
Z. Y.
,
2021
, “
Solid-State Cladding on Thin Automotive Sheet Metals Enabled by Additive Friction Stir Deposition
,”
J. Mater. Process. Technol.
,
291
, p.
117045
.
You do not currently have access to this content.