Abstract

Asymmetric flexible machining system has been widely used in numerical control machining. In traditional milling dynamics model, the cutter feed direction is usually defined as parallel to its vibration DOF, while the nonparallel condition and its induced milling dynamics response are not deeply considered. This paper presents a general dynamics modeling method for asymmetric flexible machining systems. First, to the best of the author’s knowledge, a new dimension named feed direction is proposed, which is used to establish the generalized coupling relationship between the vibration displacement and the regenerative milling force, thus improve the applicability of the milling dynamics model and reduce the experimental workload compared with the traditional modeling. Second, through the theoretical and experimental research, it is shown that the asymmetric flexible machining system has a significant feed direction-dependent characteristics, and implied the existence of high performance machining region with higher stability and lower surface location error (SLE) by contrast with the symmetric milling system and the traditional models. Finally, by controlling the feed direction angle, the milling parameters in roughing and finishing operations are optimized, and the machining efficiency has been greatly improved on the premise of stable cutting and machining accuracy.

References

1.
Altintas
,
Y.
,
Stepan
,
G.
,
Budak
,
E.
,
Schmitz
,
T.
, and
Kilic
,
Z. M.
,
2020
, “
Chatter Stability of Machining Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110801
.
2.
Ringgaard
,
K.
,
Mohammadi
,
Y.
,
Merrild
,
C.
,
Balling
,
O.
, and
Ahmadi
,
K.
,
2019
, “
Optimization of Material Removal Rate in Milling of Thin-Walled Structures Using Penalty Cost Function
,”
Int. J. Mach. Tools Manuf.
,
145
(
1
), p.
103430
.
3.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of Machine Tools Against Self-Excited Vibrations in Machining
,”
ASME Production Engineering Research Conference
,
Pittsburgh, PA
, pp.
454
465
.
4.
Tobias
,
S. A.
,
1965
,
Machine Tool Vibration
,
Blackie
,
London
.
5.
Yang
,
Y.
,
Dai
,
W.
, and
Liu
,
Q.
,
2015
, “
Design and Implementation of Two-Degree-of-Freedom Tuned Mass Damper in Milling Vibration Mitigation
,”
J. Sound Vib.
,
335
(
1
), pp.
78
88
.
6.
Altintas
,
Y.
,
2002
, “
Analytical Prediction of Three Dimensional Chatter Stability in Milling
,”
JSME Int. J., Ser. C
,
44
(
3
), pp.
717
723
.
7.
Insperger
,
T.
,
Mann
,
B. P.
,
Stépán
,
G.
, and
Bayly
,
P. V.
,
2003
, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tool Manuf.
,
43
(
1
), pp.
25
34
.
8.
Bravo
,
U.
,
Altuzarra
,
O.
,
López de Lacalle
,
L. N.
,
Sánchez
,
J. A.
, and
Campa
,
F. J.
,
2005
, “
Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine
,”
Int. J. Mach. Tool Manuf.
,
45
(
15
), pp.
1669
1680
.
9.
Budak
,
E.
,
Tun
,
L. T.
, and
Alan
,
S.
,
2012
, “
Prediction of Workpiece Dynamics and Its Effects on Chatter Stability in Milling
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
339
342
.
10.
Zatarain
,
M.
,
Bediaga
,
I.
,
Muoa
,
J.
, and
Lizarralde
,
R.
,
2008
, “
Stability of Milling Processes With Continuous Spindle Speed Variation: Analysis in the Frequency and Time Domains, and Experimental Correlation
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
379
384
.
11.
Wang
,
C.
,
Zhang
,
X.
,
Yan
,
R.
,
Chen
,
X.
, and
Cao
,
H.
,
2018
, “
Multi Harmonic Spindle Speed Variation for Milling Chatter Suppression and Parameters Optimization
,”
Precis. Eng.
,
55
(
1
), pp.
268
274
.
12.
Comak
,
A.
, and
Budak
,
E.
,
2017
, “
Modeling Dynamics and Stability of Variable Pitch and Helix Milling Tools for Development of a Design Method to Maximize Chatter Stability
,”
Precis. Eng.
,
47
(
1
), pp.
459
468
.
13.
Niu
,
J.
,
Jia
,
J.
,
Sun
,
Y.
, and
Guo
,
D.
,
2020
, “
Generation Mechanism and Quality of Milling Surface Profile for Variable Pitch Tools Considering Runout
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121001
.
14.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP
,
44
(
1
), pp.
357
362
.
15.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
16.
Halley
,
J. E.
,
2000
,
Stability of Low Radial Immersion Milling
,
Doctoral dissertation, Washington University
,
St. Louis, MI
.
17.
Bayly
,
P. V.
,
Davies
,
M. A.
,
Halley
,
J. E.
, and
Pratt
,
J. R.
,
2001
, “
Stability Analysis of Interrupted Cutting With Finite Time in the Cut
,”
ASME International Mechanical Engineering Congress & Exposition
,
New York
,
Nov. 11–16
.
18.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Num. Meth. Eng.
,
55
(
5
), pp.
503
518
.
19.
Ding
,
Y.
,
Zhu
,
L. M.
, and
Zhang
,
X. J.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tool Manuf.
,
50
(
5
), pp.
502
509
.
20.
Bachrathy
,
D.
,
Stépán
,
G.
, and
Turi
,
J.
,
2011
, “
State Dependent Regenerative Effect in Milling Processes
,”
J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
9
.
21.
Niu
,
J.
,
Jia
,
J.
,
Wang
,
R.
,
Xu
,
J.
,
Sun
,
Y.
, and
Guo
,
D.
,
2021
, “
State Dependent Regenerative Stability and Surface Location Error in Peripheral Milling of Thin-Walled Parts
,”
Int. J. Mech. Sci.
,
196
(
1
), pp.
106294
.
22.
Comak
,
A.
,
Ozsahin
,
O.
, and
Altintas
,
Y.
,
2016
, “
Stability of Milling Operations With Asymmetric Cutter Dynamics in Rotating Coordinates
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081004
.
23.
Law
,
M.
,
Altintas
,
Y.
, and
Phani
,
A. S.
,
2013
, “
Rapid Evaluation and Optimization of Machine Tools With Position-Dependent Stability
,”
Int. J. Mach. Tool Manuf.
,
68
(
1
), pp.
81
90
.
24.
Gaur
,
M.
, and
Law
,
M.
,
2019
, “
Pocket Milling Strategies Using Combined-Mode and Feed-Direction-Dependent Stability Criteria
,”
Procedia CIRP
,
82
(
1
), pp.
261
266
.
25.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2019
, “
Milling Bifurcations for Strongly Asymmetric, Symmetric, and Weakly Asymmetric System Dynamics
,”
Precis. Eng.
,
55
(
1
), pp.
1
13
.
You do not currently have access to this content.