Abstract

This paper presents the influence of the grinding-burnishing on surface integrity and corrosion performance of the laser-cladded AISI 431 alloys. As-cladded specimens were first ground followed by ball burnishing. To evaluate surface alteration and performance enhancement, six major properties were measured and analyzed in terms of surface roughness, porosity, microhardness, wear, and impact and corrosion resistance. Results showed that grinding-burnishing significantly improved the surface finish by lowering Ra and Rz by up to 29% and 41%, respectively, compared with grinding. Surface porosity was found to decrease by 18%. Maximum surface microhardness increased by 32% when grinding-burnishing, with a modified depth of up to 250 µm, while wear resistance in terms of volume loss increased by up to 38%. Because of hardness improvement, the grinding-burnishing increased the impact resistance by lowering the maximum indent depth by 29%. The corrosion resistance improved by increasing positive corrosion potential from −0.31 V (grinding) to −0.21 V (grinding-burnishing) and lowering corrosion current density from 1.18 × 10−3 A.cm−2 (for grinding) to 2.1 × 10−5 A.cm−2 (grinding-burnishing). Burnishing further induced grain modification in terms of grain deformation and flattening within microstructure, but no grain refinement was observed. XRD results however showed lattice deformation indicating potential compressive residual stress generated by burnishing. Overall, it is imperative to say that the combined grinding-burnishing can be a viable surface modification technique to extend functional service life of the laser-cladded components.

References

1.
Weng
,
F.
,
Yu
,
H.
,
Chen
,
C.
, and
Dai
,
J.
,
2015
, “
Microstructures and Wear Properties of Laser Cladding Co-Based Composite Coatings on Ti–6Al–4 V
,”
Mater. Des.
,
80
, pp.
174
181
.
2.
Diao
,
Y.
, and
Zhang
,
K.
,
2015
, “
Microstructure and Corrosion Resistance of TC2 Ti Alloy by Laser Cladding With Ti/TiC/TiB2 Powders
,”
Appl. Surf. Sci.
,
352
, pp.
163
168
.
3.
Walker
,
K. F.
,
Lourenço
,
J. M.
,
Sun
,
S.
,
Brandt
,
M.
, and
Wang
,
C. H.
,
2017
, “
Quantitative Fractography and Modelling of Fatigue Crack Propagation in High Strength AerMet®100 Steel Repaired With a Laser Cladding Process
,”
Int. J. Fatigue
,
94
, pp.
288
301
.
4.
Ibrahim
,
M. Z.
,
Sarhan
,
A. A. D.
,
Shaikh
,
M. O.
,
Kuo
,
T. Y.
,
Yusuf
,
F.
, and
Hamdi
,
M.
,
2019
, “Investigate the Effects of the Laser Cladding Parameters on the Microstructure, Phases Formation, Mechanical and Corrosion Properties of Metallic Glasses Coatings for Biomedical Implant Application,”
Additive Manufacturing of Emerging Materials
,
B.
AlMangour
, ed.,
Springer International Publishing
,
Cham
, pp.
299
323
.
5.
Abouda
,
E.
,
Dal
,
M.
,
Aubry
,
P.
,
Tarfa
,
T. N.
,
Demirci
,
I.
,
Gorny
,
C.
, and
Malot
,
T.
,
2016
, “
Effect of Laser Cladding Parameters on the Microstructure and Properties of High Chromium Hardfacing Alloys
,”
Phys. Procedia
,
83
, pp.
684
696
.
6.
Tibblin
,
F.
,
2015
, “
Characterization of a Newly Developed Martensitic Stainless Steel Powder for Laser and PTA Cladding, Undefined
.” /paper/Characterization-of-a-newly-developed-martensitic-Tibblin/5e7086cc6b35c40e79d0442d2278806 57f6c57f1, Accessed October 12, 2020.
7.
Zhang
,
P.
, and
Liu
,
Z.
,
2017
, “
Enhancing Surface Integrity and Corrosion Resistance of Laser Cladded Cr–Ni Alloys by Hard Turning and Low Plasticity Burnishing
,”
Appl. Surf. Sci.
,
409
, pp.
169
178
.
8.
Wang
,
M.
,
Xu
,
B.
,
Zhang
,
J.
,
Dong
,
S.
, and
Wei
,
S.
,
2013
, “
Experimental Observations on Surface Roughness, Chip Morphology, and Tool Wear Behavior in Machining Fe-Based Amorphous Alloy Overlay for Remanufacture
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1537
1548
.
9.
Zhao
,
Y.
,
Sun
,
J.
, and
Li
,
J.
,
2015
, “
Study on Chip Morphology and Milling Characteristics of Laser Cladding Layer
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
783
796
.
10.
Yang
,
L.
,
Patel
,
K. V.
,
Jarosz
,
K.
, and
Özel
,
T.
,
2020
, “
Surface Integrity Induced in Machining Additively Fabricated Nickel Alloy Inconel 625
,”
Procedia CIRP.
,
87
, pp.
351
354
.
11.
Uddin
,
M. S.
,
Rosman
,
H.
,
Hall
,
C.
, and
Murphy
,
P.
,
2017
, “
Enhancing the Corrosion Resistance of Biodegradable Mg-Based Alloy by Machining-Induced Surface Integrity: Influence of Machining Parameters on Surface Roughness and Hardness
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
2095
2108
.
12.
Pishva
,
P.
,
Salehi
,
M.
, and
Golozar
,
M. A.
,
2019
, “
Effect of Grinding on Surface Characteristics of HVOF-Sprayed WC–10Co–4Cr Coatings
,”
Surface Eng.
,
36
(
11
), pp.
1180
1189
.
13.
Masoumi
,
H.
,
Safavi
,
S. M.
,
Salehi
,
M.
, and
Nahvi
,
S. M.
,
2014
, “
Effect of Grinding on the Residual Stress and Adhesion Strength of HVOF Thermally Sprayed WC–10Co–4Cr Coating
,”
Mater. Manuf. Processes
,
29
(
9
), pp.
1139
1151
.
14.
Delgado
,
P.
,
Cuesta
,
I. I.
,
Alegre
,
J. M.
, and
Díaz
,
A.
,
2016
, “
State of the Art of Deep Rolling
,”
Precis. Eng.
,
46
, pp.
1
10
.
15.
Uddin
,
M. S.
,
Hall
,
C.
, and
Murphy
,
P.
,
2015
, “
Surface Treatments for Controlling Corrosion Rate of Biodegradable Mg and Mg-Based Alloy Implants
,”
Sci. Technol. Adv. Mater.
,
16
(
5
), p.
053501
.
16.
Silva-Álvarez
,
D. F.
,
Márquez-Herrera
,
A.
,
Saldaña-Robles
,
A.
,
Zapata-Torres
,
M.
,
Mis-Fernández
,
R.
,
Peña-Chapa
,
J. L.
,
Moreno-Palmerín
,
J.
, and
Hernández-Rodríguez
,
E.
,
2020
, “
Improving the Surface Integrity of the CoCrMo Alloy by the Ball Burnishing Technique
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
7592
7601
.
17.
Uddin
,
M.
,
Hall
,
C.
,
Santos
,
V.
,
Visalakshan
,
R.
,
Qian
,
G.
, and
Vasilev
,
K.
,
2021
, “
Synergistic Effect of Deep Ball Burnishing and HA Coating on Surface Integrity, Corrosion and Immune Response of Biodegradable AZ31B Mg Alloys
,”
Mater. Sci. Eng., C
,
118
, p.
111459
.
18.
Mohd Yusuf
,
S.
,
Nie
,
M.
,
Chen
,
Y.
,
Yang
,
S.
, and
Gao
,
N.
,
2018
, “
Microstructure and Corrosion Performance of 316L Stainless Steel Fabricated by Selective Laser Melting and Processed Through High-Pressure Torsion
,”
J. Alloys Compd.
,
763
, pp.
360
375
.
19.
Zhang
,
P.
, and
Liu
,
Z.
,
2015
, “
Effect of Sequential Turning and Burnishing on the Surface Integrity of Cr–Ni-Based Stainless Steel Formed by Laser Cladding Process
,”
Surf. Coat. Technol.
,
276
, pp.
327
335
.
20.
Ye
,
H.
,
Zhu
,
J.
,
Liu
,
Y.
,
Liu
,
W.
, and
Wang
,
D.
,
2020
, “
Microstructure and Mechanical Properties of Laser Cladded CrNi Alloy by Hard Turning (HT) and Ultrasonic Surface Rolling (USR)
,”
Surf. Coat. Technol.
,
393
, p.
125806
.
21.
Lu
,
H. F.
,
Xue
,
K. N.
,
Xu
,
X.
,
Luo
,
K. Y.
,
Xing
,
F.
,
Yao
,
J. H.
, and
Lu
,
J. Z.
,
2021
, “
Effects of Laser Shock Peening on Microstructural Evolution and Wear Property of Laser Hybrid Remanufactured Ni25/Fe104 Coating on H13 Tool Steel
,”
J. Mater. Process. Technol.
,
291
, p.
117016
.
22.
Hemmati
,
I.
,
Ocelík
,
V.
, and
De Hosson
,
J. T. M.
,
2011
, “
The Effect of Cladding Speed on Phase Constitution and Properties of AISI 431 Stainless Steel Laser Deposited Coatings
,”
Surf. Coat. Technol.
,
205
(
21–22
), pp.
5235
5239
.
23.
Clarke
,
A.
,
Weeks
,
I. J. J.
,
Snidle
,
R. W.
, and
Evans
,
H. P.
,
2016
, “
Running-in and Micropitting Behaviour of Steel Surfaces Under Mixed Lubrication Conditions
,”
Tribol. Int.
,
101
, pp.
59
68
.
24.
Khorram
,
A.
,
Davoodi Jamaloei
,
A.
,
Jafari
,
A.
, and
Moradi
,
M.
,
2019
, “
Nd:YAG Laser Surface Hardening of AISI 431 Stainless Steel; Mechanical and Metallurgical Investigation
,”
Opt. Laser Technol.
,
119
, p.
105617
.
25.
Guiraldenq
,
P.
, and
Hardouin Duparc
,
O.
,
2017
, “
The Genesis of the Schaeffler Diagram in the History of Stainless Steel
,”
Metall. Res. Technol.
,
114
(
6
), p.
613
.
26.
Grzesik
,
W.
, and
Żak
,
K.
,
2014
, “
Characterization of Surface Integrity Produced by Sequential Dry Hard Turning and Ball Burnishing Operations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031017
.
27.
Masoumi
,
H.
,
Safavi
,
S. M.
, and
Salehi
,
M.
,
2014
, “
Grinding Force, Specific Energy and Material Removal Mechanism in Grinding of HVOF-Sprayed WC–Co–Cr Coating
,”
Mater. Manuf. Processes
,
29
(
3
), pp.
321
330
.
28.
Gharbi
,
F.
,
Sghaier
,
S.
,
Al-Fadhalah
,
K. J.
, and
Benameur
,
T.
,
2011
, “
Effect of Ball Burnishing Process on the Surface Quality and Microstructure Properties of AISI 1010 Steel Plates
,”
J. Mater. Eng. Perform.
,
20
(
6
), pp.
903
910
.
29.
Hassan
,
A. M.
,
1997
, “
The Effects of Ball- and Roller-Burnishing on the Surface Roughness and Hardness of Some Non-Ferrous Metals
,”
J. Mater. Process. Technol.
,
72
(
3
), pp.
385
391
.
30.
Swirad
,
S.
, and
Pawlus
,
P.
,
2020
, “
The Effect of Ball Burnishing on Tribological Performance of 42CrMo4 Steel Under Dry Sliding Conditions
,”
Materials (Basel)
,
13
(
9
), p.
2127
.
31.
Swirad
,
S.
, and
Pawlus
,
P.
,
2020
, “
The Influence of Ball Burnishing on Friction in Lubricated Sliding
,”
Materials (Basel)
,
13
(
21
), p.
5027
.
32.
Bounouara
,
A.
,
Hamadache
,
H.
, and
Amirat
,
A.
,
2018
, “
Investigation on the Effect of Ball Burnishing on Fracture Toughness in Spiral API X70 Pipeline Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
4543
4551
.
33.
Zhang
,
Q.
,
Duan
,
B.
,
Zhang
,
Z.
,
Wang
,
J.
, and
Si
,
C.
,
2021
, “
Effect of Ultrasonic Shot Peening on Microstructure Evolution and Corrosion Resistance of Selective Laser Melted Ti–6Al–4 V Alloy
,”
Journal of Materials Research and Technology.
,
11
, pp.
1090
1099
.
34.
Charfeddine
,
Y.
,
Youssef
,
S.
,
Sghaier
,
S.
,
Sghaier
,
J.
, and
Hamdi
,
H.
,
2021
, “
Study of the Simultaneous Grinding/Ball-Burnishing of AISI 4140 Based on Finite Element Simulations and Experiments
,”
J. Mater. Res. Technol.
,
192
, p.
106097
.
35.
Huang
,
B.
,
Kaynak
,
Y.
,
Sun
,
Y.
, and
Jawahir
,
I. S.
,
2015
, “
Surface Layer Modification by Cryogenic Burnishing of Al 7050-T7451 Alloy and Validation With FEM-Based Burnishing Model
,”
Procedia CIRP.
,
31
, pp.
1
6
.
36.
Sarkar
,
P. P.
,
Kumar
,
P.
,
Manna
,
M. K.
, and
Chakraborti
,
P. C.
,
2005
, “
Microstructural Influence on the Electrochemical Corrosion Behaviour of Dual-Phase Steels in 3.5% NaCl Solution
,”
Mater. Lett.
,
59
(
19–20
), pp.
2488
2491
.
37.
Fu
,
C. H.
,
Sealy
,
M. P.
,
Guo
,
Y. B.
, and
Wei
,
X. T.
,
2014
, “
Austenite–Martensite Phase Transformation of Biomedical Nitinol by Ball Burnishing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3122
3130
.
38.
Ituarte
,
I. F.
,
Salmi
,
M.
,
Papula
,
S.
,
Huuki
,
J.
,
Hemming
,
B.
,
Coatanea
,
E.
,
Nurmi
,
S.
, and
Virkkunen
,
I.
,
2020
, “
Surface Modification of Additively Manufactured 18% Nickel Maraging Steel by Ultrasonic Vibration-Assisted Ball Burnishing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071008
.
You do not currently have access to this content.