Abstract

Development of residual stress of high magnitude, to the extent of material yield strength and in some cases higher than yield strength, is one of the major challenges faced by components produced using the wire arc additive manufacturing (WAAM). This study focuses on aluminum alloy 5183 with respect to the residual stress formation and distribution in WAAM builds. Residual stresses were determined using the contour method. The effects of processing conditions, such as substrate thickness, interlayer temperature, and deposit height on the magnitude and distribution of residual stresses were investigated. Substrate thickness was found to have a major influence on the residual stress distribution along deposit height. Tensile residual stress up to the value of the material yield strength was present. The majority part of the deposit showed tensile stress while substrate showed compensating compressive residual stress. Lower interlayer temperature samples exhibited residual stresses of higher degree of magnitude compared with sample produced using higher interlayer temperature. Deposit height, i.e., total number of layers affected stress distribution pattern similar to substrate thickness.

References

1.
Derekar
,
K. S.
,
2018
, “
A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium
,”
Mater. Sci. Technol.
,
34
(
8
), pp.
895
916
.
2.
Liu
,
L.
,
Zhuang
,
Z.
,
Liu
,
F.
, and
Zhu
,
M.
,
2013
, “
Additive Manufacturing of Steel-Bronze Bimetal by Shaped Metal Deposition: Interface Characteristics and Tensile Properties
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2131
2137
.
3.
Zeng
,
Z.
,
Cong
,
B.
,
Oliveira
,
J.
,
Ke
,
W.
,
Schell
,
N.
,
Peng
,
B.
,
Qi
,
Z.
,
Ge
,
F.
,
Zhang
,
W.
, and
Ao
,
S.
,
2020
, “
Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties
,”
Addit. Manuf.
,
32
, p.
101051
.
4.
Lopes
,
J. G.
,
Machado
,
C. M.
,
Duarte
,
V. R.
,
Rodrigues
,
T. A.
,
Santos
,
T. G.
, and
Oliveira
,
J. P.
,
2020
, “
Effect of Milling Parameters on HSLA Steel Parts Produced by Wire and Arc Additive Manufacturing (WAAM)
,”
J. Manuf. Processes
,
59
, pp.
739
749
.
5.
Gu
,
J.
,
Ding
,
J.
,
Williams
,
S. W.
,
Gu
,
H.
,
Ma
,
P.
, and
Zhai
,
Y.
,
2016
, “
The Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on Porosity in Additively Manufactured Aluminum Alloys
,”
J. Mater. Process. Technol.
,
230
, pp.
26
34
.
6.
Gu
,
J.
,
Wang
,
X.
,
Bai
,
J.
,
Ding
,
J.
,
Williams
,
S.
,
Zhai
,
Y.
, and
Liu
,
K.
,
2018
, “
Deformation Microstructures and Strengthening Mechanisms for the Wire + Arc Additively Manufactured Al-Mg4.5Mn Alloy With Inter-Layer Rolling
,”
Mater. Sci. Eng. A
,
712
, pp.
292
301
.
7.
Fang
,
X.
,
Zhang
,
L.
,
Chen
,
G.
,
Dang
,
X.
,
Huang
,
K.
,
Wang
,
L.
, and
Lu
,
B.
,
2018
, “
Correlations Between Microstructure Characteristics and Mechanical Properties in 5183 Aluminium Alloy Fabricated by Wire-Arc Additive Manufacturing With Different Arc Modes
,”
Materials (Basel)
,
11
(
11
).
8.
“Alloy 5183 Aluminium Weld 5183,” Aircr Mater, https://www.aircraftmaterials.com/data/weld/5183.html, Accessed September 13, 2018.
9.
Cong
,
B.
,
Ding
,
J.
, and
Williams
,
S.
,
2014
, “
Effect of Arc Mode in Cold Metal Transfer Process on Porosity of Additively Manufactured Al-6.3%Cu Alloy
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1593
1606
.
10.
Webster
,
G. A.
, and
Ezeilo
,
A. N.
,
2001
, “
Residual Stress Distributions and Their Influence on Fatigue Lifetimes
,”
Int. J. Fatigue
,
23
, pp.
375
383
.
11.
Vastola
,
G.
,
Zhang
,
G.
,
Pei
,
Q. X.
, and
Zhang
,
Y. W.
,
2016
, “
Controlling of Residual Stress in Additive Manufacturing of Ti6Al4 V by Finite Element Modeling
,”
Addit. Manuf.
,
12
, pp.
231
239
.
12.
Li
,
R.
,
Xiong
,
J.
, and
Lei
,
Y.
,
2019
, “
Investigation on Thermal Stress Evolution Induced by Wire and Arc Additive Manufacturing for Circular Thin-Walled Parts
,”
J. Manuf. Processes
,
40
, pp.
59
67
.
13.
Ghasri-Khouzani
,
M.
,
Peng
,
H.
,
Rogge
,
R.
,
Attardo
,
R.
,
Ostiguy
,
P.
,
Neidig
,
J.
,
Billo
,
R.
,
Hoelzle
,
D.
, and
Shankar
,
M. R.
,
2017
, “
Experimental Measurement of Residual Stress and Distortion in Additively Manufactured Stainless Steel Components With Various Dimensions
,”
Mater. Sci. Eng. A
,
707
, pp.
689
700
.
14.
Zhao
,
H.
,
Zhang
,
G.
,
Yin
,
Z.
, and
Wu
,
L.
,
2013
, “
Effects of Interpass Idle Time on Thermal Stresses in Multipass Multilayer Weld-Based Rapid Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p. 011016.
15.
Martina
,
F.
,
Roy
,
M. J.
,
Szost
,
B. A.
,
Terzi
,
S.
,
Colegrove
,
P. A.
,
Williams
,
S. W.
,
Withers
,
P. J.
,
Meyer
,
J.
, and
Hofmann
,
M.
,
2016
, “
Residual Stress of As-Deposited and Rolled Wire + Arc Additive Manufacturing Ti–6Al–4 V Components
,”
Mater. Sci. Technol.
,
32
(
14
), pp.
1439
1448
.
16.
Colegrove
,
P. A.
,
Coules
,
H. E.
,
Fairman
,
J.
,
Martina
,
F.
,
Kashoob
,
T.
,
Mamash
,
H.
, and
Cozzolino
,
L. D.
,
2013
, “
Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts Through High-Pressure Rolling
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1782
1791
.
17.
Szost
,
B. A.
,
Terzi
,
S.
,
Martina
,
F.
,
Boisselier
,
D.
,
Prytuliak
,
A.
,
Pirling
,
T.
,
Hofmann
,
M.
, and
Jarvis
,
D. J.
,
2016
, “
A Comparative Study of Additive Manufacturing Techniques: Residual Stress and Microstructural Analysis of CLAD and WAAM Printed Ti-6Al-4V Components
,”
Mater. Des.
,
89
, pp.
559
567
.
18.
Hoye
,
N.
,
Li
,
H. J.
,
Cuiuri
,
D.
, and
Paradowska
,
A.
,
2014
, “
Measurement of Residual Stresses in Titanium Aerospace Components Formed via Additive Manufacturing
,”
Mater. Sci. Forum
,
777
, pp.
124
129
.
19.
Ahmad
,
B.
,
van der Veen
,
S. O.
,
Fitzpatrick
,
M. E.
, and
Guo
,
H.
,
2018
, “
Measurement and Modelling of Residual Stress in Wire-Feed Additively Manufactured Titanium
,”
Mater. Sci. Technol.
,
34
(
18
), pp.
2250
2259
.
20.
Colegrove
,
P. A.
,
Martina
,
F.
,
Roy
,
M. J.
,
Szost
,
B. A.
,
Terzi
,
S.
,
Williams
,
S. W.
,
Withers
,
P. J.
, and
Jarvis
,
D.
,
2014
, “
High Pressure Interpass Rolling of Wire + Arc Additively Manufactured Titanium Components
,”
Adv. Mater. Res.
,
996
, pp.
694
700
.
21.
Brown
,
D. W.
,
Bernardin
,
J. D.
,
Carpenter
,
J. S.
,
Clausen
,
B.
,
Spernjak
,
D.
, and
Thompson
,
J. M.
,
2016
, “
Neutron Diffraction Measurements of Residual Stress in Additively Manufactured Stainless Steel
,”
Mater. Sci. Eng. A
,
678
, pp.
291
298
.
22.
Silva
,
C. M. A.
,
Bragança
,
I. M. F.
,
Cabrita
,
A.
,
Quintino
,
L.
, and
Martins
,
P. A. F.
,
2017
, “
Formability of a Wire Arc Deposited Aluminium Alloy
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
10
), pp.
4059
4068
.
23.
Rodrigues
,
T. A.
,
Duarte
,
V.
,
Miranda
,
R. M.
,
Santos
,
T. G.
, and
Oliveira
,
J. P.
,
2019
, “
Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM)
,”
Materials (Basel)
,
12
(
7
).
24.
Zhang
,
Y.
,
Ganguly
,
S.
,
Edwards
,
L.
, and
Fitzpatrick
,
M. E.
,
2004
, “
Cross-Sectional Mapping of Residual Stresses in a VPPA Weld Using the Contour Method
,”
Acta Mater.
,
52
(
17
), pp.
5225
5232
.
25.
Toparli
,
M. B.
,
Fitzpatrick
,
M. E.
, and
Gungor
,
S.
,
2015
, “
Determination of Multiple Near-Surface Residual Stress Components in Laser Peened Aluminum Alloy via the Contour Method
,”
Metall. Mater. Trans. A
,
46
(
9
), pp.
4268
4275
.
26.
Toparli
,
M. B.
, and
Fitzpatrick
,
M. E.
,
2016
, “
Development and Application of the Contour Method to Determine the Residual Stresses in Thin Laser-Peened Aluminium Alloy Plates
,”
Exp. Mech.
,
56
(
2
), pp.
323
330
.
27.
Hosseinzadeh
,
F.
,
Kowal
,
J.
, and
Bouchard
,
P. J.
,
2014
, “
Towards Good Practice Guidelines for the Contour Method of Residual Stress Measurement
,”
J. Eng.
,
2014
(
8
), pp.
453
468
.
28.
Prime
,
M. B.
,
Gnäupel-Herold
,
T.
,
Baumann
,
J. A.
,
Lederich
,
R. J.
,
Bowden
,
D. M.
, and
Sebring
,
R. J.
,
2006
, “
Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld
,”
Acta Mater.
,
54
(
15
), pp.
4013
4021
.
29.
Hosseinzadeh
,
F.
,
Bouchard
,
P. J.
,
Keynes
,
M.
, and
Uk
,
M. K.
,
2013
, “
Mapping Multiple Components of the Residual Stress Tensor in a Large P91 Steel Pipe Girth Weld Using a Single Contour Cut
,”
Exp. Mech.
,
53
(
2
), pp.
171
181
.
30.
Zhao
,
H.
,
Zhang
,
G.
,
Yin
,
Z.
, and
Wu
,
L.
,
2012
, “
Three-Dimensional Finite Element Analysis of Thermal Stress in Single-Pass Multi-Layer Weld-Based Rapid Prototyping
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
276
285
.
31.
Alimardani
,
M.
,
Toyserkani
,
E.
, and
Huissoon
,
J. P.
,
2007
, “
A 3D Dynamic Numerical Approach for Temperature and Thermal Stress Distributions in Multilayer Laser Solid Freeform Fabrication Process
,”
Opt. Lasers Eng.
,
45
(
12
), pp.
1115
1130
.
32.
Derekar
,
K. S.
,
2020
, “Aspects of Wire Arc Additive Manufacturing (WAAM) of Alumnium Alloy 5183,” Coventry University.
33.
Horgar
,
A.
,
Fostervoll
,
H.
,
Nyhus
,
B.
,
Ren
,
X.
,
Eriksson
,
M.
, and
Akselsen
,
O. M.
,
2018
, “
Additive Manufacturing Using WAAM with AA5183 Wire
,”
J. Mater. Process. Technol.
,
259
, pp.
68
74
.
34.
Prime
,
M. B.
,
2001
, “
Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut
,”
ASME J. Eng. Mater. Technol.
,
123
(
2
), pp.
162
168
.
35.
Prime
,
M. B.
, and
DeWald
,
A. T.
,
2013
, “The Contour Method,”
Practical Residual Stress Measurement Methods
,
G. S.
Schajer
, ed.,
Wiley-Blackwell
,
Hoboken, NJ
, pp.
109
138
.
36.
Johnson
,
G.
,
2008
,
‘Residual Stress Measurements Using the Contour Method’
,
University of Manchester
,
Manchester, UK
.
37.
Dutra
,
J. C.
,
e Silva
,
R. H. G.
,
Savi
,
B. M.
,
Marques
,
C.
, and
Alarcon
,
O. E.
,
2015
, “
Metallurgical Characterization of the 5083H116 Aluminum Alloy Welded With the Cold Metal Transfer Process and Two Different Wire-Electrodes (5183 and 5087)
,”
Weld. World
,
59
(
6
), pp.
797
807
.
38.
Hawk
,
J. A.
,
Frank
,
R. E.
, and
Wilsdorf
,
H. G. F.
,
1988
, “
Yield Stress as Determined From Hardness Measurements for Mechanically Alloyed Aluminium Base Alloys
,”
Metall. Trans. A
,
19A
(
9
), pp.
2363
2366
.
39.
Zhang
,
P.
,
Li
,
S. X.
, and
Zhang
,
Z. F.
,
2011
, “
General Relationship Between Strength and Hardness
,”
Mater. Sci. Eng. A
,
529
(
1
), pp.
62
73
.
40.
Busby
,
J. T.
,
Hash
,
M. C.
, and
Was
,
G. S.
,
2005
, “
The Relationship Between Hardness and Yield Stress in Irradiated Austenitic and Ferritic Steels
,”
J. Nucl. Mater.
,
336
(
2–3
), pp.
267
278
.
41.
Cahoon
,
J.
,
Broughton
,
W.
, and
Kutzak
,
A.
,
1971
, “
The Determination of Yield Strength From Hardness Measurements
,”
Metall. Trans.
,
2
, pp.
1979
1983
.
42.
Tabor
,
D.
,
1948
, “
A Simple Theory of Static and Dynamic Hardness
,”
Proc. R. Soc. A
,
192
(
1029
), pp.
247
274
.
43.
Tabor
,
D.
,
1970
, “
The Hardness of Solids
,”
Rev. Phys. Technol.
,
1
(
3
), pp.
145
179
.
44.
Leggatt
,
R. H.
,
2008
, “
Residual Stresses in Welded Structures
,”
Int. J. Press. Vessels Pip.
,
85
(
3
), pp.
144
151
.
45.
Summers
,
P. T.
,
Chen
,
Y.
,
Rippe
,
C. M.
,
Allen
,
B.
,
Mouritz
,
A. P.
,
Case
,
S. W.
, and
Lattimer
,
B. Y.
,
2015
, “
Overview of Aluminum Alloy Mechanical Properties During and After Fires
,”
Fire Sci. Rev.
,
4
(
1
).
46.
Lumley
,
R.
,
2010
,
Fundamentals of Aluminium Metallurgy
,
Woodhead Publishing Limited
,
UK
.
47.
Yan
,
D.
,
Liu
,
X.
,
Li
,
J.
,
Yang
,
J.
, and
Fang
,
H.
,
2010
, “
Effect of Strain Hardening and Strain Softening on Welding Distortion and Residual Stress of A7N01-T4 Aluminum Alloy by Simulation Analysis
,”
J. Cent. South Univ. Technol.
,
17
, pp.
666
673
.
48.
Tellkamp
,
V. L.
,
Dallek
,
S.
,
Cheng
,
D.
, and
Lavernia
,
E.
,
2001
, “
Grain Growth Behavior of a Nanostructured 5083 Al—Mg Alloy
,”
J. Mater. Res.
,
16
(
4
), pp.
938
944
.
49.
Kou
,
S.
,
2003
,
Welding Metallurgy
, Hoboken, NJ, 431(446), pp.
223
225
.
50.
DeWald
,
A. T.
, and
Hill
,
M. R.
,
2001
, “Residual Stress in a Thick Weld Determined Using the Contour Method,” Davis.
51.
Corbin
,
D. J.
,
Reutzel
,
E. W.
, and
Beese
,
A. M.
,
2018
, “
Effect of Substrate Thickness and Preheating on the Distortion of Laser Deposited Ti–6Al–4V’
,”
ASME J. Manuf. Sci. Eng.
,
140
(6), p. 061009.
52.
Totten
,
G.
, and
MacKenzie
,
S.
,
2003
,
Handbook of Aluminum—Vol 2 Alloy Production and Materials Manufactruing
,
Marcel Dekker Inc
,
US
.
53.
Song
,
X.
,
Xie
,
M.
,
Hofmann
,
F.
,
Illston
,
T.
,
Connolley
,
T.
,
Reinhard
,
C.
,
Atwood
,
R.
, et al
,
2015
, “
Residual Stresses and Microstructure in Powder Bed Direct Laser Deposition (PB DLD) Samples
,”
Int. J. Mater. Form
,
8
(
2
), pp.
245
254
.
54.
Brice
,
C. A.
, and
Hofmeister
,
W. H.
,
2013
, “
Determination of Bulk Residual Stresses in Electron Beam Additive-Manufactured Aluminum
,”
Metall. Mater. Trans. A
,
44
(
11
), pp.
5147
5153
.
55.
Totten
,
G.
, and
Scott
,
M.
,
2003
,
Handbook of Aluminum—Vol 1 Physical Metallurgy and Processes
,
Marcel Dekker Inc
,
New York
.
You do not currently have access to this content.