Abstract

Determination of permeability of thick-section glass fabric preforms with fabric layers of different architectures is critical for manufacturing large, thick composite structures with complex geometry, such as wind turbine blades. The thick-section reinforcement permeability is inherently three-dimensional and needs to be obtained for accurate composite processing modeling and analysis. Numerical simulation of the liquid stage of vacuum-assisted resin infusion molding (VARIM) is important to advance the composite manufacturing process and reduce processing-induced defects. In this research, the 3D permeability of thick-section E-glass fabric reinforcement preforms is determined, and the results are validated by a comparison between flow front progressions from experiments and from numerical simulations using ansys fluent software. The orientation of the principal permeability axes were unknown prior to experiments. The approach used in this research differs from those in literature in that the through-thickness permeability is determined as a function of flow front positions along the principal axes and the in-plane permeabilities and is not dependent on the inlet radius. The approach was tested on reinforcements with fabric architectures which vary through-the-thickness direction, such as those in a spar cap of a wind turbine blade. The computational simulations of the flow-front progression through-the-thickness were consistent with experimental observations.

References

1.
Brouwer
,
W.
,
van Herpt
,
E.
, and
Labordus
,
M.
,
2003
, “
Vacuum Injection Moulding for Large Structural Applications
,”
Compos. Part A: Appl. Sci. Manuf.
,
34
(
6
), pp.
551
558
.
2.
George
,
A.
,
2011
, “
Optimization of Resin Infusion Processing for Composite Materials: Simulation and Characterization Strategies
, ” Ph.D. thesis,
University of Stuttgart
, March.
3.
Mouritz
,
A.
,
Gellert
,
E.
,
Burchill
,
P.
, and
Challis
,
K.
,
2001
, “
Review of Advanced Composite Structures for Naval Ships and Submarines
,”
Compos. Struct.
,
53
(
1
), pp.
21
41
.
4.
Harris
,
C. E.
,
Starnes
,
J. H.
, and
Shuart
,
M. J.
,
2002
, “
Design and Manufacturing of Aerospace Composite Structures, State-of-the-Art Assessment
,”
J. Aircraft
,
39
(
4
), pp.
545
560
.
5.
Sas
,
H.
,
Simacek
,
P.
, and
Advani
,
S.
,
2015
, “
A Methodology to Reduce Variability During Vacuum Infusion With Optimized Design of Distribution Media
,”
Compos. Part A: Appl. Sci. Manuf.
,
78
, pp.
223
233
.
6.
Mogavero
,
J.
, and
Advani
,
S.
,
1996
, “
Permeability: A Key to Successful Modeling of the RTM Process
,”
41st International SAMPE Symposium and Exhibition – Materials and Process Challenges: Aging Systems, Affordability, Alternative Applications
,
Anaheim, CA
,
Mar. 24–28
.
7.
Kuentzer
,
N.
,
Simacek
,
P.
,
Advani
,
S.
, and
Walsh
,
S.
,
2005
, “
Permeability Characterization of Dual Scale Fibrous Porous Media
,”
Compos. Part A: Appl. Sci. Manuf.
,
37
(
11
), pp.
2057
2068
.
8.
Bickerton
,
S.
,
Advani
,
S.
,
Mohan
,
R.
, and
Shires
,
D.
,
2000
, “
Experimental Analysis and Numerical Modeling of Flow Channel Effects in Resin Transfer Molding
,”
Polym. Compos.
,
21
(
1
), pp.
134
153
.
9.
Lawrence
,
J.
,
Barr
,
J.
,
Karmaker
,
R.
, and
Advani
,
S.
,
2004
, “
Characterization of Preform Permeability in the Presence of Race Tracking
,”
Compos. Part A: Appl. Sci. Manuf.
,
35
(
12
), pp.
1393
1405
.
10.
Hoes
,
K.
,
Dinescu
,
D.
,
Sol
,
H.
,
Parnas
,
R.
, and
Lomov
,
S.
,
2004
, “
Study of Nesting Induced Scatter of Permeability Values in Layered Reinforcement Fabrics
,”
Compos. Part A: Appl. Sci. Manuf.
,
35
(
12
), pp.
1407
1418
.
11.
Weitzenbock
,
J.
,
Shenoi
,
R.
, and
Wilson
,
P.
,
1999
, “
Radial Flow Permeability Measurement. Part B: Application
,”
Compos. Part A: Appl. Sci. Manuf.
,
30
(
6
), pp.
797
813
.
12.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media, Ch. 7
, 2, Vol.
120
,
American Elsevier Publishing Company, Inc.
,
New York
.
13.
Chan
,
A.
, and
Hwang
,
S.
,
1991
, “
Anisotropic In-Plane Permeability of Fabric Media
,”
Polym. Eng. Sci.
,
31
(
16
), pp.
1233
1239
.
14.
Gauvin
,
R.
,
Trochu
,
F.
,
Lemenn
,
Y.
, and
Diallo
,
L.
,
1996
, “
Permeability Measurement and Flow Simulation Through Fiber Reinforcement
,”
Polym. Compos.
,
17
(
1
), pp.
34
42
.
15.
Weitzenbock
,
J.
,
Shenoi
,
R.
, and
Wilson
,
P.
,
1998
, “
Measurement of Three-Dimensional Permeability
,”
Compos. Part A: Appl. Sci. Manuf.
,
29
(
1–2
), pp.
159
169
.
16.
Konstantopoulos
,
S.
,
Grossing
,
H.
,
Hergan
,
P.
,
Weninger
,
M.
, and
Schledjewski
,
R.
,
2016
, “
Determination of the Unsaturated Through-Thickness Permeability of Fibrous Preforms Based on Flow Front Detection by Ultrasound
,”
Polym. Compos.
,
39
(
2
), pp.
360
367
.
17.
Weitzenbock
,
J.
,
Shenoi
,
R.
, and
Wilson
,
P.
,
1998
, “
Radial Flow Permeability Measurement. Part A: Theory
,”
Compos. Part A: Appl. Sci. Manuf.
,
30
(
6
), pp.
781
796
.
18.
Wu
,
C.
,
Wang
,
T.
, and
Lee
,
L.
,
1994
, “
Trans-Plane Fluid Measurement and Its Applications in Liquid Composite Molding
,”
Polym. Compos.
,
15
(
4
), pp.
289
298
.
19.
Scholz
,
S.
,
Gillespie Jr.
,
J. W.
, and
Heider
,
D.
,
2007
, “
Measurement of Transverse Permeability Using Gaseous and Liquid Flow
,”
Compos. Part A: Appl. Sci. Manuf.
,
38
(
9
), pp.
2034
2040
.
20.
Neacsu
,
V.
,
Leisen
,
J.
,
Beckham
,
H.
, and
Advani
,
S.
,
2007
, “
Use of Magnetic Resonance Imaging to Visualize Impregnation Across Aligned Cylinders Due to Capillary Forces
,”
Exp. Fluids
,
42
(
3
), pp.
425
440
.
21.
Breard
,
J.
,
Saouab
,
A.
, and
Bouquet
,
G.
,
1999
, “
Dependence of the Reinforcement Anisotropy on a Three Dimensional Resin Flow Observed by X-ray Radioscopy
,”
J. Reinf. Plast. Compos.
,
18
(
9
), pp.
814
826
.
22.
Okonkwo
,
K.
,
Simacek
,
P.
,
Advani
,
S.
, and
Parnas
,
R.
,
2011
, “
Characterization of 3D Fiber Preform Permeability Tensor in Radial Flow Using An Inverse Algorithm Based on Sensors and Simulation
,”
Compos. Part A: Appl. Sci. Manuf.
,
42
(
10
), pp.
1283
1292
.
23.
Ahn
,
S.
,
Lee
,
W.
, and
Springer
,
G.
,
1995
, “
Measurement of the Three-Dimensional Permeability of Fiber Preforms Using Embedded Fiber Optic Sensors
,”
J. Compos. Mater.
,
29
(
6
), pp.
714
733
.
24.
Tuncol
,
G.
,
Danisman
,
M.
,
Kaynar
,
A.
, and
Sozerl
,
E.
,
2007
, “
Constraints on Monitoring Resin Flow in the Resin Transfer Molding (RTM) Process by Using Thermocouple Sensors
,”
Compos. Part A: Appl. Sci. Manuf.
,
38
(
5
), pp.
1363
1386
.
25.
Gokce
,
A.
,
Chohra
,
M.
,
Advani
,
S.
, and
Walsh
,
S.
,
2005
, “
Permeability Estimation Algorithm to Simultaneously Characterize the Distribution Media and the Fabric Preform in Vacuum Assisted Resin Transfer Molding Process
,”
Compos. Sci. Technol.
,
65
(
14
), pp.
2129
2139
.
26.
Lugo
,
J.
,
Simacek
,
P.
, and
Advani
,
S.
,
2014
, “
Analytic Method to Estimate Multiple Equivalent Permeability Composites From a Single Rectilinear Experiment in Liquid Composite Molding Processes
,”
Compos. Part A: Appl. Sci. Manuf.
,
67
(
C
), pp.
157
170
.
27.
Nedanov
,
P.
, and
Advani
,
S.
,
2002
, “
A Method to Determine 3D Permeability of Fibrous Reinforcements
,”
J. Compos. Mater.
,
36
(
2
), pp.
241
254
.
28.
Pedneau
,
E.
, and
Wang
,
S.
,
2017
, “
Computational Modeling and Comparison With Experiments on 3D Permeability in Vacuum Assisted Resin Infusion of Glass-Fabric Reinforced Composite Laminates
,”
32nd Technical Conference
,
West Lafayette, IN
,
Oct. 23–25
.
29.
Mekic
,
S.
,
Akhatov
,
I.
, and
Ulven
,
C.
,
2009
, “
A Radial Infusion Model for Transverse Permeability Measurements of Fiber Reinforcement in Composite Materials
,”
Polym. Compos.
,
30
(
7
), pp.
907
917
.
30.
Salem
,
A.
, and
Parnas
,
R.
,
1993
, “
A Comparison of the Unidirectional and Radial in-Plane Flow of Fluids Through Woven Composite Reinforcements
,”
Polym. Compos.
,
14
(
5
), pp.
383
394
.
31.
Phelan
,
F.
,
Leung
,
Y.
, and
Parnas
,
R.
,
1994
, “
Modeling of Microscale Flow in Unidirectional Fibrous Porous Media
,”
J. Therm. Compos. Mater.
,
7
(
3
), pp.
208
218
.
32.
Robitaille
,
F.
, and
Gauvin
,
R.
,
1999
, “
Compaction of Textile Reinforcements for Composites Manufacturing: Reorganization of the Fiber Network. III. Reorganization of the Fiber Network
,”
Polym. Compos.
,
20
(
1
), pp.
48
61
.
33.
Niggemann
,
C.
,
Song
,
Y.
,
Gillespie
,
J.
, and
Heider
,
D.
,
2008
, “
Experimental Investigation of the Controlled Atmospheric Pressure Resin Infusion (CAPRI) Process
,”
J. Compos. Mater.
,
42
(
11
), pp.
1049
1061
.
34.
Saunders
,
R.
,
Lekakou
,
C.
, and
Bader
,
M.
,
1999
, “
Compression in the Processing of Polymer Composites: Modelling of the Viscoelastic Compressing of Resin-Impregnated Fiber Networks
,”
Compos. Sci. Technol.
,
59
(
10
), pp.
1483
1494
.
35.
Yousaf
,
Z.
,
Potluri
,
P.
, and
Withers
,
P.
,
2016
, “
Influence of Tow Architecture on Compaction and Nesting in Textile Preforms
,”
Appl. Compos. Mater.
,
24
(
2
), pp.
337
350
.
36.
Somashekar
,
A.
,
Bickerton
,
S.
, and
Bhattacharyya
,
D.
,
2006
, “
Exploring the Non-Elastic Compression Deformation of Dry Glass Fibre Reinforcements
,”
Compos. Sci. Technol.
,
67
(
2
), pp.
183
200
.
37.
ANSYS Fluent
,
2013
,
ANSYS Fluent Theory Guide
, 15.0,
SAS IP, Inc.
,
Canonsburg, PA
. https://www.ansys.com/
38.
Youngs
,
D.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numer. Method Fluid Dyn.
,
24
, pp.
273
285
.
39.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, 1st ed.,
Hemisphere Publishing Corporation
.
You do not currently have access to this content.