Abstract

Freeform bending offers a wide range of possibilities in terms of component geometries, material grades, and profile cross sections. In the field of circular solid and hollow profiles, the circular shape of the profile used determines the design of the tool. When using rectangular profiles, the cross section of the tool cannot be easily obtained by an offset of the profile cross section. The large tolerance ranges of the profile standards like wide ranges of corner radii or material thickness require compromises with regard to the shape and tolerances of the tool. Currently, there are no design guidelines for freeform bending tools and no approaches as to whether universal tool approaches or specialized tool approaches should be used for freeform bending of rectangular profiles. This concerns both the geometric dimensions regarding clearances and the functional design of the tools, for example, rollers or sliding tools. Tests have shown that the design of the tool has a great influence on the quality of the component. Clearances that are too wide to accommodate the tolerances can result in larger wrinkling and buckling. Clearances that are too tight can lead to increased scrap because parts of a batch may not fit into the tool. Furthermore, the trade-off in the tool design can lead to tool shapes, which encourage further defects. These are mainly wrinkling, cross-sectional deformations, and strongly deformed profile corners, which in some cases form cracks in the material. In this article, the influences of the tool design on the bending of rectangular profiles and the resulting defects of the profiles are investigated. For this purpose, experiments were carried out utilizing several tool designs with different variants and four combinations of the movable die and the fixed die. Each configuration was used with the same calibrated kinematics to investigate several different radii and compare the results. The experiments show that the design of the tool has a direct influence on the bending result and also an influence on the development of bending defects. The hypothesis that the effect of increasing defects is caused by increasing friction is shown experimentally, explained theoretically and confirmed with an additionally built simulation model.

References

1.
Maier
,
D.
,
Stebner
,
S. C.
,
Ismail
,
A.
,
Dölz
,
M.
,
Lohmann
,
B.
,
Münstermann
,
S.
, and
Volk
,
W.
,
2021
, “
The Influence of Freeform Bending Process Parameters on Residual Stresses for Steel Tubes
,”
Adv. Ind. Manuf. Eng.
,
2
, p. 10047.
2.
Yang
,
H.
,
Li
,
H.
,
Zhang
,
Z.
,
Zhan
,
M.
,
Liu
,
J.
, and
Li
,
G.
,
2012
, “
Advances and Trends on Tube Bending Forming Technologies
,”
Chin. J. Aeronaut.
,
25
(
1
), pp.
1
12
.
3.
Kersten
,
S.
,
2013
,
Prozessmodelle zum Drei-Rollen-Schubbiegen von Rohrprofilen
,
Shaker Verlag
,
Siegen
.
4.
Jörg Neu GmbH
,
2018
, “
Technische Daten: 6-Achs-Technologie
,” https://www.neu-gmbh.de/en/freiformbiegen-nsb
5.
Chatti
,
S.
,
Hermes
,
M.
,
Tekkaya
,
A. E.
, and
Kleiner
,
M.
,
2010
, “
The New TSS Bending Process: 3D Bending of Profiles With Arbitrary Cross-Sections
,”
CIRP Ann.
,
59
(
1
), pp.
315
318
.
6.
Neugebauer
,
R.
,
Drossel
,
W.-G.
, and
Blau
,
P.
,
2001
, “
3D-Freiformbiegen von Profilen: HexaBend – ein neuartiges Konzept
,”
Zeitschrift für wirtschaftlichen Fabrikbetrieb
,
96
(
11–12
), pp.
611
615
.
7.
Yang
,
Q.
,
Liu
,
C.
,
Cheng
,
C.
,
Tao
,
J.
,
Bai
,
X.
,
Ma
,
Z.
, and
Guo
,
X.
,
2022
, “
Finite Element Simulation and Experiment of Six-Axis Free Bending & Twisting Forming (6fbtf) of 304 Stainless Steel Square Tube Spiral Component
,”
SSRN Electron. J.
8.
Yang
,
Q.
,
Liu
,
C.
,
Cheng
,
C.
,
Tao
,
J.
,
Bai
,
X.
,
Ma
,
Z.
, and
Guo
,
X.
,
2022
, “
Six-Axis Free Bending and Twisting Analysis of Spiral Square Tube
,”
Int. J. Mech. Sci.
,
228
, p.
107459
.
9.
Guo
,
X.
,
Xiong
,
H.
,
Xu
,
Y.
,
Ma
,
Y.
,
El-Aty
,
A. A.
,
Tao
,
J.
, and
Jin
,
K.
,
2018
, “
Free-Bending Process Characteristics and Forming Process Design of Copper Tubular Components
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3585
3601
.
10.
Guo
,
X.
,
Xiong
,
H.
,
Xu
,
Y.
,
El-Aty
,
A. A.
,
Ma
,
Y.
,
Zhao
,
Y.
, and
Zhang
,
S.
,
2018
, “
U-R Relationship Prediction Method for Aluminum Alloy Circular Tube Free-Bending Process Based on Sensitivity Analysis of Material Parameters
,”
Int. J. Adv. Manuf. Technol.
,
99
(
5–8
), pp.
1967
1977
.
11.
Groth
,
S.
,
Engel
,
B.
, and
Frohn
,
P.
,
2018
, “
Approach to a Manufacture-Oriented Modeling of Bent Tubes Depending on the Curvature Distribution During Three-Roll-Push-Bending
,”
Proceedings of the 21st International ESAFORM Conference on Material Forming: ESAFORM 2018
,
Palermo, Italy
,
Apr. 23–25
, p.
110006
.
12.
Vipavc
,
D.
,
2018
,
Eine Simulationsmethode für das 3-Rollen-Schubbiegen
,
FAU University Press
,
Erlangen
.
13.
Beulich
,
N.
,
Craighero
,
P.
, and
Volk
,
W.
,
2017
, “
FEA Simulation of Free-Bending—A Preforming Step in the Hydroforming Process Chain
,”
36th IDDRG Conference – Materials Modelling and Testing for Sheet Metal Forming
,
Munich, Germany
,
July 2–6
.
14.
Beulich
,
N.
,
Spoerer
,
J.
, and
Volk
,
W.
,
2019
, “
Sensitivity Analysis of Process and Tube Parameters in Free-Bending Processes
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
651
(
1
), p.
12031
.
15.
Vatter
,
P.
, and
Plettke
,
R.
,
2013
, “
Geometrical Variations of Tubes and Their Impact on Freeform Bending Processes
,”
Advanced Materials Research
,
769
, pp.
181
188
. www.scientific.net/AMR.769.181
16.
Stebner
,
S. C.
,
Maier
,
D.
,
Ismail
,
A.
,
Balyan
,
S.
,
Dölz
,
M.
,
Lohmann
,
B.
,
Volk
,
W.
, and
Münstermann
,
S.
,
2021
, “
A System Identification and Implementation of a Soft Sensor for Freeform Bending
,”
Materials
,
14
(
16
), p.
4549
.
17.
Deutsches Institut für Normung e. V.
,
2022
,
DIN 50125:2022-08, Prüfung metallischer Werkstoffe- Zugproben, Beuth Verlag
.
19.
Werner
,
M. K.
,
Maier
,
D.
,
Scandola
,
L.
, and
Volk
,
W.
,
2021
, “
Motion Profile Calculation for Freeform Bending With Moveable Die Based on Tool Parameters
,”
ESAFORM - 24th International Conference on Material Forming
,
Liège, Belgium
,
Apr. 14–16
. .
20.
21.
Scandola
,
L.
,
Maier
,
D.
,
Werner
,
M. K.
,
Hartmann
,
C.
, and
Volk
,
W.
,
2022
, “
Automatic Extraction and Conversion of the Bending Line From Parametric and Discrete Data for the Free-Form Bending Process
,”
NUMISHEET 2022
,
Springer International Publishing
,
Cham
, pp.
813
826
.
22.
Murata
,
M.
, and
Aoki
,
Y.
,
1996
, “
Analysis of Circular Tube Bending by MOS Bending Method
,”
Advanced Technology of Plasticity: Proceedings of the 5th International Conference of Technology of Plasticity
,
Columbus, OH
,
Oct. 7–10
, pp.
505
508
.
23.
Livermore Software Technology Corporation
,
2017
,
LS-DYNA R10.0 10/16/17, Available: LS-DYNA Manuals, www.dynasupport.com/manuals/ls-dyna-manuals
.
24.
Haufe
,
A.
,
Schweizerhof
,
K.
, and
DuBois
,
P.
,
2013
, “
Properties & Limits: Review of Shell Element Formulations
,”
LS-DYNA Developer Forum 2013
,
Filderstatt, Germany
,
Sept. 24
.
You do not currently have access to this content.