Abstract

Inertia friction welding (IFW) is a solid-state welding process for joining engineering materials. In this paper, a 2.5D finite element (FE) model was developed to simulate IFW of MLX®19 maraging steel. The predicted results showed a non-uniform temperature distribution, with a decrease in temperature from the periphery to the center of the weld interface. Higher temperature and lower stress distributions were predicted in the weld zone (WZ) and the adjacent regions in the vicinity of the WZ. The von-Mises effective stress, effective strain, and strain-rate were investigated at different time-steps of the FE simulation. The effective stress was minimum at the weld interface, and the effective strain and strain-rate attained a quasi-steady-state status with the ongoing IFW after a threshold time (∼6.5 s). The simulated results were validated by comparing the predicted flash morphology with an actual IFW weld, and temperature profiles measured at specific locations using embedded thermocouples. The difference between the experimental and the simulated results was ∼4.7%, implying a good convergence of the model. Microstructural characterizations were performed across different regions, and the observed features were found to be in agreement with the expected microstructure based on the simulated thermal profiles, which included almost complete (∼90%) and partial transformation of martensite to austenite in the WZ and thermomechanically affected zone (TMAZ), respectively. Analyses of crystallographic texture showed that the material (i.e., both transformed austenite and martensite) underwent pure shear deformation during IFW.

References

1.
Mutua
,
J.
,
Nakata
,
S.
,
Onda
,
T.
, and
Chen
,
Z.-C.
,
2018
, “
Optimization of Selective Laser Melting Parameters and Influence of Post Heat Treatment on Microstructure and Mechanical Properties of Maraging Steel
,”
Mater. Des.
,
139
, pp.
486
497
.
2.
Mouritz
,
A. P.
,
2012
, “1—Introduction to Aerospace Materials,”
Introduction to Aerospace Materials
,
Woodhead Publishing
,
Cambridge, UK
, pp.
1
14
.
3.
Banerjee
,
A.
,
Wylie
,
A.
, and
Da Silva
,
L.
,
2023
, “
Near-Net Shape Manufacture of Ultra-High Strength Maraging Steel Using Flow Forming and Inertia Friction Welding: Experimental and Microstructural Characterisation
,”
ASME J. Manuf. Sci. Eng.
,
145
(
2
), p.
021004
.
4.
Moat
,
R.
,
Karadge
,
M.
,
Preuss
,
M.
,
Bray
,
S.
, and
Rawson
,
M.
,
2008
, “
Phase Transformations Across High Strength Dissimilar Steel Inertia Friction Weld
,”
J. Mater. Process. Technol.
,
204
(
1
), pp.
48
58
.
5.
Vill
,
V. I.
,
1962
,
Friction Welding of Metals
,
American Welding Society; Trade Distributor: Reinhold Publishing Company
,
New York
.
6.
Bennett
,
C.
,
2015
, “
Finite Element Modelling of the Inertia Friction Welding of a CrMoV Alloy Steel Including the Effects of Solid-State Phase Transformations
,”
J. Manuf. Process.
,
18
, pp.
84
91
.
7.
Hasegawa
,
M.
, and
Ieda
,
T.
,
1999
, “
Effects of Friction Welding Conditions on Initial Joining Phenomena
,”
Weld. Int.
,
13
(
9
), pp.
701
711
.
8.
Kimura
,
M.
,
Kasuya
,
K.
,
Kusaka
,
M.
,
Kaizu
,
K.
, and
Fuji
,
A.
,
2009
, “
Effect of Friction Welding Condition on Joining Phenomena and Joint Strength of Friction Welded Joint Between Brass and low Carbon Steel
,”
Sci. Technol. Weld. Join.
,
14
(
5
), pp.
404
412
.
9.
Maalekian
,
M.
,
Kozeschnik
,
E.
,
Brantner
,
H. P.
, and
Cerjak
,
H.
,
2008
, “
Comparative Analysis of Heat Generation in Friction Welding of Steel Bars
,”
Acta Mater.
,
56
(
12
), pp.
2843
2855
.
10.
Bennett
,
C. J.
,
Attallah
,
M. M.
,
Preuss
,
M.
,
Shipway
,
P. H.
,
Hyde
,
T. H.
, and
Bray
,
S.
,
2013
, “
Finite Element Modeling of the Inertia Friction Welding of Dissimilar High-Strength Steels
,”
Metall. Mater. Trans. A
,
44
(
11
), pp.
5054
5064
.
11.
Mohammed
,
M. B.
,
Bennett
,
C. J.
,
Hyde
,
T. H.
, and
Williams
,
E. J.
,
2009
, “
The Evaluation of Coefficient of Friction for Representative and Predictive Finite Element Modelling of the Inertia Friction Welding
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine
,
Orlando, FL
,
June 8–12
, pp.
829
837
, Paper No: GT2009-59451. .
12.
Zhang
,
Q. Z.
,
Zhang
,
L. W.
,
Liu
,
W. W.
,
Zhang
,
X. G.
,
Zhu
,
W. H.
, and
Qu
,
S.
,
2006
, “
3D Rigid Viscoplastic FE Modelling of Continuous Drive Friction Welding Process
,”
Sci. Technol. Weld. Join.
,
11
(
6
), pp.
737
743
.
13.
Geng
,
P.
,
Qin
,
G.
, and
Zhou
,
J.
,
2019
, “
Numerical and Experimental Investigation on Friction Welding of Austenite Stainless Steel and Middle Carbon Steel
,”
J. Manuf. Process.
,
47
, pp.
83
97
.
14.
Yang
,
X.
,
Li
,
W.
,
Li
,
J.
,
Xiao
,
B.
,
Ma
,
T.
,
Huang
,
Z.
, and
Guo
,
J.
,
2015
, “
Finite Element Modeling of the Linear Friction Welding of GH4169 Superalloy
,”
Mater. Des.
,
87
, pp.
215
230
.
15.
Lee
,
A. S. K.
,
Wu
,
W. T.
, and
Srivatsa
,
S.
,
2001
,
Finite Element Modelling of the Inertia Welding Process
,
NUMIFORM
,
Toyohashi, Japan
.
16.
Balasubramanian
,
V.
,
Li
,
Y.
,
Stotler
,
T.
,
Crompton
,
J.
,
Soboyejo
,
A.
,
Katsube
,
N.
, and
Soboyejo
,
W.
,
1999
, “
A New Friction Law for the Modelling of Continuous Drive Friction Welding: Applications to 1045 Steel Welds
,”
Mater. Manuf. Process.
,
14
(
6
), pp.
845
860
.
17.
Moal
,
A.
, and
Massoni
,
E.
,
1995
, “
Finite Element Simulation of the Inertia Welding of Two Similar Parts
,”
Eng. Comput.
,
12
(
6
), pp.
497
512
.
18.
Lei
,
B.
,
Shi
,
Q.
,
Yang
,
L.
,
Liu
,
C.
,
Pan
,
J.
, and
Chen
,
G.
,
2020
, “
Evolution of Interfacial Contact During Low Pressure Rotary Friction Welding: A Finite Element Analysis
,”
J. Manuf. Process.
,
56
(Part A), pp.
643
655
.
19.
Buffa
,
G.
,
Hua
,
J.
,
Shivpuri
,
R.
, and
Fratini
,
L.
,
2006
, “
A Continuum Based fem Model for Friction Stir Welding—Model Development
,”
Mater. Sci. Eng. A
,
419
(
1
), pp.
389
396
.
20.
Zhang
,
H.
,
Sun
,
M.
,
Ma
,
D.
,
Xu
,
B.
,
Wang
,
T.
,
Li
,
D.
, and
Li
,
Y.
,
2021
, “
Effect of Aging Temperature on the Heterogeneous Microstructure and Mechanical Properties of a 12Cr–10Ni–Mo–Ti Maraging Steel for Cryogenic Applications
,”
J. Mater. Sci.
,
56
(
19
), pp.
11469
11484
.
21.
Lang
,
F.
, and
Kenyon
,
N.
,
1971
,
Welding of Maraging Steels
,
Welding Research Council
,
New York
.
22.
Nan
,
X.
,
Xiong
,
J.
,
Jin
,
F.
,
Li
,
X.
,
Liao
,
Z.
,
Zhang
,
F.
, and
Li
,
J.
,
2019
, “
Modeling of Rotary Friction Welding Process Based on Maximum Entropy Production Principle
,”
J. Manuf. Process.
,
37
, pp.
21
27
.
23.
Li
,
W.
, and
Wang
,
F.
,
2011
, “
Modeling of Continuous Drive Friction Welding of Mild Steel
,”
Mater. Sci. Eng. A
,
528
(
18
), pp.
5921
5926
.
24.
Pang
,
J. W. L.
,
Preuss
,
M.
,
Withers
,
P. J.
,
Baxter
,
G. J.
, and
Small
,
C.
,
2003
, “
Effects of Tooling on the Residual Stress Distribution in an Inertia Weld
,”
Mater. Sci. Eng. A
,
356
(
1
), pp.
405
413
.
25.
Grant
,
B.
,
Preuss
,
M.
,
Withers
,
P. J.
,
Baxter
,
G.
, and
Rowlson
,
M.
,
2009
, “
Finite Element Process Modelling of Inertia Friction Welding Advanced Nickel-Based Superalloy
,”
Mater. Sci. Eng. A
,
513–514
, pp.
366
375
.
26.
Banerjee
,
A.
,
Ntovas
,
M.
,
Da Silva
,
L.
,
Rahimi
,
S.
, and
Wynne
,
B.
,
2021
, “
Inter-Relationship Between Microstructure Evolution and Mechanical Properties in Inertia Friction Welded 8630 Low-Alloy Steel
,”
Archiv. Civil Mech. Eng.
,
21
(
4
), p.
149
.
27.
Banerjee
,
A.
,
Ntovas
,
M.
,
Da Silva
,
L.
, and
Rahimi
,
S.
,
2021
, “
Effect of Rotational Speed and Inertia on the Mechanical Properties and Microstructural Evolution During Inertia Friction Welding of 8630M Steel
,”
Mater. Lett.
,
296
, p.
129906
.
28.
Ancey-Rocchi
,
S.
,
Vidal
,
V.
,
Poulain
,
T.
,
Billot
,
T.
,
Bechet
,
D.
,
Binot
,
N.
,
Huleux
,
V.
,
Dehmas
,
M.
, and
Delagnes
,
D.
,
2021
, “
Influence of Austenitization Parameters on the Precipitation Sequence and the Chemical Homogenization of Austenite in a High-Performance Fe–Ni–Cr–Al–Ti–Mo Stainless Maraging Steel
,”
Metall. Mater. Trans. A
,
52
(
10
), pp.
4623
4635
.
29.
Banerjee
,
A.
,
Ntovas
,
M.
,
Silva
,
L. D.
,
O’ Neill
,
R.
, and
Rahimi
,
S.
,
2022
, “
Continuous Drive Friction Welding of AISI 8630 Low-Alloy Steel: Experimental Investigations on Microstructure Evolution and Mechanical Properties
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071001
.
30.
Celada-Casero
,
C.
,
Sietsma
,
J.
, and
Santofimia
,
M. J.
,
2019
, “
The Role of the Austenite Grain Size in the Martensitic Transformation in Low Carbon Steels
,”
Mater. Des.
,
167
, p.
107625
.
31.
Sun
,
D.
,
Li
,
C.
,
Xue
,
X.
,
Liu
,
Y.
,
Guo
,
Z.
, and
Gu
,
J.
,
2020
, “
Optimization Scheme of the Orientation Relationship From Crystallographic Statistics of Variants and Its Application to Lath Martensite
,”
Mater. Des.
,
195
, p.
109022
.
32.
Nyyssönen
,
T.
,
Peura
,
P.
, and
Kuokkala
,
V. T.
,
2018
, “
Crystallography, Morphology, and Martensite Transformation of Prior Austenite in Intercritically Annealed High-Aluminum Steel
,”
Metall. Mater. Trans. A
,
49
(
12
), pp.
6426
6441
.
33.
Kurdjumow
,
G.
, and
Sachs
,
G.
,
1930
, “
On the Mechanism of Steel Hardening
,”
Physics
,
64
(
5
), pp.
325
343
.
34.
He
,
Y.
,
Godet
,
S.
, and
Jonas
,
J. J.
,
2005
, “
Representation of Misorientations in Rodrigues–Frank Space: Application to the Bain, Kurdjumov–Sachs, Nishiyama–Wassermann and Pitsch Orientation Relationships in the Gibeon Meteorite
,”
Acta Mater.
,
53
(
4
), pp.
1179
1190
.
35.
He
,
Y.
,
Godet
,
S.
,
Jacques
,
P. J.
, and
Jonas
,
J. J.
,
2006
, “
Crystallographic Relations Between Face- and Body-Centred Cubic Crystals Formed Under Near-Equilibrium Conditions: Observations From the Gibeon Meteorite
,”
Acta Mater.
,
54
(
5
), pp.
1323
1334
.
You do not currently have access to this content.