Abstract

Wire arc additive manufacturing (WAAM) enables 3D printing of large high-value metal components. However, integrating WAAM into production lines requires a critical understanding of the influence of process parameters on the resulting material characteristics. As such, this research investigates the relationship between WAAM wire feed speed (WFS) and torch speed (TS) on the resulting mechanical characteristics of 316LSi thick parts (2.5 cm (0.98 in.)). The experimental procedure is informed by a training matrix that allows parametric analysis of WFS and TS on the ultimate tensile strength (σult), yield strength (σy), elastic modulus (E), failure strain (εf), hardness (HV0.5), and dimensional accuracy (Da) of the printed samples. The research found that WAAM-processed 316LSi parts feature isotropic material properties despite variations in WFS and TS. The surrogate model developed in this study offers five significant polynomial models capable of accurately predicting the influence of WAAM process parameters on σult, σy, εf, E, and Da. The research found TS to be the most significant WAAM process parameter in comparison to WFS for σult and εf. On the contrary, σy, E, and Da were found to be primarily driven by WFS as opposed to TS. Overall, the paper for the first time presents an accurate surrogate model to predict the mechanical characteristics of WAAM 316LSi thick parts informed by wire feed speed and torch speed. The study demonstrates that the mechanical properties of WAAM-processed steel are primarily influenced by the underlying process parameters offering significant potential for tunable performance.

References

1.
ISO/ASTM 52900:2021(E)
,
2021
, “Additive Manufacturing—General Principles—Fundamentals and Vocabulary, International Organization for Standardization,” https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en
2.
Ahn
,
D. G.
,
2021
, “
Directed Energy Deposition (DED) Process: State of the Art
,”
Int. J. of Precis. Eng. and Manuf.-Green Tech.
,
8
, pp.
703
742
.
3.
Bourlet
,
C.
,
Zimmer-Chevret
,
S.
,
Pesci
,
R.
,
Bigot
,
R.
,
Robineau
,
A.
, and
Scandella
,
F.
,
2020
, “
Microstructure and Mechanical Properties of High Strength Steel Deposits Obtained by Wire-Arc Additive Manufacturing
,”
J. Mater. Process. Technol.
,
285
, p.
116759
.
4.
Li
,
J. Z.
,
Alkahari
,
M. R.
,
Rosli
,
N. A. B.
,
Hasan
,
R.
,
Sudin
,
M. N.
, and
Ramli
,
F. R.
,
2019
, “
Review of Wire Arc Additive Manufacturing for 3d Metal Printing
,”
Int. J. Autom. Technol.
,
13
(
3
), pp.
346
353
.
5.
Bevans
,
B.
,
Ramalho
,
A.
,
Smoqi
,
Z.
,
Gaikwad
,
A.
,
Santos
,
T. G.
,
Rao
,
P.
, and
Oliveira
,
J. P.
,
2023
, “
Monitoring and Flaw Detection During Wire-Based Directed Energy Deposition Using In-Situ Acoustic Sensing and Wavelet Graph Signal Analysis
,”
Mater. Des.
,
225
, p.
111480
.
6.
Li
,
S.
,
Li
,
J. Y.
,
Jiang
,
Z. W.
,
Cheng
,
Y.
,
Li
,
Y. Z.
,
Tang
,
S.
,
Leng
,
J. Z.
, et al
,
2022
, “
Controlling the Columnar-to-Equiaxed Transition During Directed Energy Deposition of Inconel 625
,”
Addit. Manuf.
,
57
, p.
102958
.
7.
Zuo
,
X.
,
Zhang
,
W.
,
Chen
,
Y.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Li
,
Y.
,
Luo
,
Z.
, and
Ao
,
S.
,
2022
, “
Wire-Based Directed Energy Deposition of NiTiTa Shape Memory Alloys: Microstructure, Phase Transformation, Electrochemistry, X-Ray Visibility and Mechanical Properties
,”
Addit. Manuf.
,
59
, p.
103115
.
8.
Rodrigues
,
T. A.
,
Duarte
,
V.
,
Miranda
,
R. M.
,
Santos
,
T. G.
, and
Oliveira
,
J. P.
,
2019
, “
Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM)
,”
Materials
,
12
(
7
), p.
1121
.
9.
Fang
,
J.
,
Wang
,
K.
,
Yang
,
D.
, and
Huang
,
Y.
,
2019
, “
Gas Flow Status Analysis in CMT+P Additive Manufacturing Based on Texture Features of Molten Pool Images
,”
Optik.
,
179
, pp.
385
394
.
10.
Kindermann
,
R. M.
,
Roy
,
M. J.
,
Morana
,
R.
, and
Prangnell
,
P. B.
,
2020
, “
Process Response of Inconel 718 to Wire + Arc Additive Manufacturing With Cold Metal Transfer
,”
Mater. Des.
,
195
, p.
109031
.
11.
Ali
,
Y.
,
Henckell
,
P.
,
Hildebrand
,
J.
,
Reimann
,
J.
,
Bergmann
,
J. P.
, and
Barnikol-Oettler
,
S.
,
2019
, “
Wire Arc Additive Manufacturing of Hot Work Tool Steel With CMT Process
,”
J. Mater. Process. Technol.
,
269
, pp.
109
116
.
12.
Gardner
,
L.
,
Kyvelou
,
P.
,
Herbert
,
G.
, and
Buchanan
,
C.
,
2020
, “
Testing and Initial Verification of the World’s First Metal 3D Printed Bridge
,”
J. Constr. Steel Res.
,
172
, p.
106233
.
13.
Ye
,
J.
,
Kyvelou
,
P.
,
Gilardi
,
F.
,
Lu
,
H.
,
Gilbert
,
M.
, and
Gardner
,
L.
,
2021
, “
An End-to-End Framework for the Additive Manufacture of Optimized Tubular Structures
,”
IEEE Access
,
9
, pp.
165476
165489
.
14.
Feucht
,
T.
,
Lange
,
J.
,
Waldschmitt
,
B.
,
Schudlich
,
A.-K.
,
Klein
,
M.
, and
Oechsner
,
M.
,
2020
, “
Welding Process for the Additive Manufacturing of Cantilevered Components With the WAAM
,”
Adv. Struct. Mater.
,
125
, pp.
67
78
.
15.
Williams
,
S. W.
,
Martina
,
F.
,
Addison
,
A. C.
,
Ding
,
J.
,
Pardal
,
G.
, and
Colegrove
,
P.
,
2016
, “
Wire+Arc Additive Manufacturing
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
641
647
.
16.
Cunningham
,
C. R.
,
Flynn
,
J. M.
,
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2018
, “
Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
672
686
.
17.
Rodrigues
,
T. A.
,
Escobar
,
J. D.
,
Shen
,
J.
,
Duarte
,
V. R.
,
Ribamar
,
G. G.
,
Avila
,
J. A.
,
Maawad
,
E.
,
Schell
,
N.
,
Santos
,
T. G.
, and
Oliveira
,
J. P.
,
2021
, “
Effect of Heat Treatments on 316 Stainless Steel Parts Fabricated by Wire and Arc Additive Manufacturing: Microstructure and Synchrotron X-Ray Diffraction Analysis
,”
Addit. Manuf.
,
48
, p.
102428
.
18.
Rodrigues
,
T. A.
,
Duarte
,
V. R.
,
Miranda
,
R. M.
,
Santos
,
T. G.
, and
Oliveira
,
J. P.
,
2021
, “
Ultracold-Wire and Arc Additive Manufacturing (UC-WAAM)
,”
J. Mater. Process. Technol.
,
296
, p.
117196
.
19.
Rodrigues
,
T. A.
,
Cipriano Farias
,
F. W.
,
Zhang
,
K.
,
Shamsolhodaei
,
A.
,
Shen
,
J.
,
Zhou
,
N.
,
Schell
,
N.
, et al
,
2022
, “
Wire and Arc Additive Manufacturing of 316L Stainless Steel/Inconel 625 Functionally Graded Material: Development and Characterization
,”
J. Mater. Res. Technol.
,
21
, pp.
237
251
.
20.
Xie
,
B.
,
Xue
,
J.
, and
Ren
,
X.
,
2020
, “
Wire Arc Deposition Additive Manufacturing and Experimental Study of 316L Stainless Steel by CMT + P Process
,”
Metals
,
10
, p.
1419
.
21.
Evans
,
S. I.
,
Wang
,
J.
,
Qin
,
J.
,
He
,
Y.
,
Shepherd
,
P.
, and
Ding
,
J.
,
2022
, “
A Review of WAAM for Steel Construction—Manufacturing, Material and Geometric Properties, Design, and Future Directions
,”
Structures
,
44
, pp.
1506
1522
.
22.
Abe
,
T.
, and
Sasahara
,
H.
,
2019
, “
Layer Geometry Control for the Fabrication of Lattice Structures by Wire and Arc Additive Manufacturing
,”
Addit. Manuf.
,
28
, pp.
639
648
.
23.
Ščetinec
,
A.
,
Klobčar
,
D.
, and
Bračun
,
D.
,
2021
, “
In-Process Path Replanning and Online Layer Height Control Through Deposition Arc Current for Gas Metal Arc Based Additive Manufacturing
,”
J. Manuf. Process.
,
64
, pp.
1169
1179
.
24.
Xiong
,
J.
,
Zhang
,
Y.
, and
Pi
,
Y.
,
2020
, “
Control of Deposition Height in WAAM Using Visual Inspection of Previous and Current Layers
,”
J. Intell. Manuf.
,
328
(
32
), pp.
2209
2217
. doi.org/10.1007/S10845-020-01634-6
25.
Xu
,
B.
,
Tan
,
X.
,
Gu
,
X.
,
Ding
,
D.
,
Deng
,
Y.
,
Chen
,
Z.
, and
Xu
,
J.
,
2019
, “
Shape-Driven Control of Layer Height in Robotic Wire and Arc Additive Manufacturing
,”
Rapid Prototyp. J.
,
25
(
10
), pp.
1637
1646
.
26.
Wang
,
Y.
,
Xu
,
X.
,
Zhao
,
Z.
,
Deng
,
W.
,
Han
,
J.
,
Bai
,
L.
,
Liang
,
X.
, and
Yao
,
J.
,
2021
, “
Coordinated Monitoring and Control Method of Deposited Layer Width and Reinforcement in WAAM Process
,”
J. Manuf. Process.
,
71
, pp.
306
316
.
27.
Xia
,
C.
,
Pan
,
Z.
,
Zhang
,
S.
,
Polden
,
J.
,
Wang
,
L.
,
Li
,
H.
,
Xu
,
Y.
, and
Chen
,
S.
,
2020
, “
Model Predictive Control of Layer Width in Wire Arc Additive Manufacturing
,”
J. Manuf. Process.
,
58
, pp.
179
186
.
28.
Cunningham
,
C. R.
,
Wang
,
J.
,
Dhokia
,
V.
,
Shrokani
,
A.
, and
Newman
,
S. T.
,
2019
, “
Characterisation of Austenitic 316LSi Stainless Steel Produced by Wire Arc Additive Manufacturing With Interlayer Cooling
,”
Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
, pp.
426
439
.
29.
Kyvelou
,
P.
,
Huang
,
C.
,
Gardner
,
L.
, and
Buchanan
,
C.
,
2021
, “
Structural Testing and Design of Wire Arc Additively Manufactured Square Hollow Sections
,”
J. Struct. Eng.
,
147
(
12
), p.
04021218
.
30.
Laghi
,
V.
,
Palermo
,
M.
,
Gasparini
,
G.
,
Girelli
,
V. A.
, and
Trombetti
,
T.
,
2021
, “
On the Influence of the Geometrical Irregularities in the Mechanical Response of Wire-and-Arc Additively Manufactured Planar Elements
,”
J. Constr. Steel Res.
,
178
, p.
106490
.
31.
Wang
,
L.
,
Xue
,
J.
, and
Wang
,
Q.
,
2019
, “
Correlation Between Arc Mode, Microstructure, and Mechanical Properties During Wire Arc Additive Manufacturing of 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
751
, pp.
183
190
.
32.
Chen
,
X.
,
Li
,
J.
,
Cheng
,
X.
,
He
,
B.
,
Wang
,
H.
, and
Huang
,
Z.
,
2017
, “
Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing
,”
Mater. Sci. Eng. A
,
703
, pp.
567
577
.
33.
Palmeira Belotti
,
L.
,
van Dommelen
,
J. A. W.
,
Geers
,
M. G. D.
,
Goulas
,
C.
,
Ya
,
W.
, and
Hoefnagels
,
J. P. M.
,
2022
, “
Microstructural Characterisation of Thick-Walled Wire Arc Additively Manufactured Stainless Steel
,”
J. Mater. Process. Technol.
,
299
, p.
117373
.
34.
Fuchs
,
C.
,
Baier
,
D.
,
Semm
,
T.
, and
Zaeh
,
M. F.
,
2020
, “
Determining the Machining Allowance for WAAM Parts
,”
Prod. Eng.
,
14
(
5–6
), pp.
629
637
.
35.
Stucker
,
B.
, and
Qu
,
X.
,
2003
, “
A Finish Machining Strategy for Rapid Manufactured Parts and Tools
,”
Rapid Prototyp. J.
,
9
(
4
), pp.
194
200
.
36.
Liu
,
J.
,
Xu
,
Y.
,
Ge
,
Y.
,
Hou
,
Z.
, and
Chen
,
S.
,
2020
, “
Wire and Arc Additive Manufacturing of Metal Components: A Review of Recent Research Developments
,”
Int. J. Adv. Manuf. Technol.
,
111
(
1–2
), pp.
149
198
.
37.
Jin
,
W.
,
Zhang
,
C.
,
Jin
,
S.
,
Tian
,
Y.
,
Wellmann
,
D.
, and
Liu
,
W.
,
2020
, “
Wire Arc Additive Manufacturing of Stainless Steels: A Review
,”
Appl. Sci.
,
10
(
5
), p.
1563
.
38.
Arjunan
,
A.
,
Robinson
,
J.
,
Baroutaji
,
A.
,
Tuñón-Molina
,
A.
,
Martí
,
M.
, and
Serrano-Aroca
,
Á.
,
2021
, “
3d Printed Cobalt-Chromium-Molybdenum Porous Superalloy With Superior Antiviral Activity
,”
Int. J. Mol. Sci.
,
22
(
23
), p.
12721
.
39.
Lee
,
S. H.
,
2020
, “
Optimization of Cold Metal Transfer-Based Wire Arc Additive Manufacturing Processes Using Gaussian Process Regression
,”
Metals
,
10
(
4
), pp.
461
474
.
40.
ISO 14343:2017
,
2017
, “
Welding Consumables—Wire Electrodes, Strip Electrodes, Wires and Rods for Arc Welding of Stainless and Heat Resisting Steels—Classification
,” https://www.iso.org/standard/67727.html
41.
Müller
,
J.
,
Grabowski
,
M.
,
Müller
,
C.
,
Hensel
,
J.
,
Unglaub
,
J.
,
Thiele
,
K.
,
Kloft
,
H.
, and
Dilger
,
K.
,
2019
, “
Design and Parameter Identification of Wire and Arc Additively Manufactured (WAAM) Steel Bars for Use in Construction
,”
Metals
,
9
(
7
), p.
725
.
42.
Singh
,
S.
,
kumar Sharma
,
S.
, and
Rathod
,
D. W.
,
2021
, “
A Review on Process Planning Strategies and Challenges of WAAM
,”
Mater. Today Proc.
,
47
(
19
), pp.
6564
6575
.
43.
Koli
,
Y.
,
Aravindan
,
S.
, and
Rao
,
P. V.
,
2022
, “
Influence of Heat Input on the Evolution of δ-Ferrite Grain Morphology of SS308L Fabricated Using WAAM-CMT
,”
Mater. Charact.
,
194
, p.
112363
.
44.
Li
,
C.
,
Gu
,
H.
,
Wang
,
W.
,
Wang
,
S.
,
Ren
,
L.
,
Wang
,
Z.
,
Ming
,
Z.
, and
Zhai
,
Y.
,
2019
, “
Effect of Heat Input on Formability, Microstructure, and Properties of Al–7Si–0.6Mg Alloys Deposited by CMT-WAAM Process
,”
Appl. Sci.
,
10
, p.
70
.
45.
Gordon
,
J. V.
, and
Gary Harlow
,
D.
,
2019
, “
Statistical Modeling of Wire and Arc Additive Manufactured Stainless Steel 304: Microstructure and Fatigue
,”
Int. J. Reliab. Qual. Safety Eng.
,
26
(
4
), p.
1950016
.
46.
Rosli
,
N. A.
,
Alkahari
,
M. R.
,
Abdollah
,
M. F.
,
Maidin
,
S.
,
Ramli
,
F. R.
, and
Herawan
,
S. G.
,
2021
, “
Review on Effect of Heat Input for Wire Arc Additive Manufacturing Process
,”
J. Mater. Res. Technol.
,
11
, pp.
2127
2145
.
47.
Xie
,
B.
,
Xue
,
J.
,
Ren
,
X.
,
Wu
,
W.
, and
Lin
,
Z.
,
2020
, “
A Comparative Study of the CMT+P Process on 316L Stainless Steel Additive Manufacturing
,”
Appl. Sci.
,
10
, p.
3284
.
48.
Nancharaiah
,
T.
,
Ranga Raju
,
D.
, and
Ramachandra Raju
,
V.
,
2010
, “
An Experimental Investigation on Surface Quality and Dimensional Accuracy of FDM Components
,”
Int. J. Emerg. Technol.
,
1
, pp.
106
111
. https://www.researchgate.net/publication/267248480
49.
Eltes
,
P. E.
,
Kiss
,
L.
,
Bartos
,
M.
,
Gyorgy
,
Z. M.
,
Csakany
,
T.
,
Bereczki
,
F.
,
Lesko
,
V.
,
Puhl
,
M.
,
Varga
,
P. P.
, and
Lazary
,
A.
,
2020
, “
Geometrical Accuracy Evaluation of an Affordable 3D Printing Technology for Spine Physical Models
,”
J. Clin. Neurosci.
,
72
, pp.
438
446
.
50.
Decker
,
N.
,
Wang
,
Y.
, and
Huang
,
Q.
,
2020
, “
Efficiently Registering Scan Point Clouds of 3D Printed Parts for Shape Accuracy Assessment and Modeling
,”
J. Manuf. Syst.
,
56
, pp.
587
597
.
51.
ISO 6892-1
,
2019
,
Metallic materials — Tensile testing — Part 1: Method of Test at Room Temperature
.
52.
Thombre
,
M. N.
,
Preisig
,
H. A.
, and
Addis
,
M. B.
,
2015
, “
Developing Surrogate Models via Computer Based Experiments
,”
Comput. Aided Chem. Eng.
,
37
, pp.
641
646
.
53.
Milhomme
,
S.
,
Lartigau
,
J.
,
Brugger
,
C.
, and
Froustey
,
C.
,
2021
, “
Bead Geometry Prediction Using Multiple Linear Regression Analysis: Application to Ti-6Al-4V Beads Made by Laser Metal Powder Deposition
,”
Int. J. Adv. Manuf. Technol.
,
117
(
1–2
), pp.
607
620
.
54.
Srivastava
,
M.
,
Rathee
,
S.
,
Tiwari
,
A.
, and
Dongre
,
M.
,
2022
, “
Wire Arc Additive Manufacturing of Metals: A Review on Processes, Materials and Their Behaviour
,”
Mater. Chem. Phys.
,
294
, p.
126988
.
55.
Vo
,
T. H.
,
Grandvallet
,
C.
, and
Vignat
,
F.
,
2021
, “
A Model for Manufacturing Large Parts With WAAM Technology
,”
Adv. Manuf. Technol.
,
XXXIV
, pp.
1
6
.
56.
Müller
,
J.
,
Hensel
,
J.
, and
Dilger
,
K.
,
2022
, “
Mechanical Properties of Wire and Arc Additively Manufactured High-Strength Steel Structures
,”
Weld. World
,
66
(
3
), pp.
395
407
.
57.
Sun
,
L.
,
Jiang
,
F.
,
Huang
,
R.
,
Yuan
,
D.
,
Guo
,
C.
, and
Wang
,
J.
,
2020
, “
Anisotropic Mechanical Properties and Deformation Behavior of Low-Carbon High-Strength Steel Component Fabricated by Wire and Arc Additive Manufacturing
,”
Mater. Sci. Eng. A
,
787
, p.
139514
.
58.
ASM International
,
1980
,
Metals Handbook: Properties and Selection Stainless Steels, Tool Materials and Special-Purpose Metals
, 9th ed.,
ASM International
,
Metals Park, OH
.
59.
Yadollahi
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Seely
,
D. W.
,
2015
, “
Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
644
, pp.
171
183
.
60.
Arjunan
,
A.
,
Singh
,
M.
,
Baroutaji
,
A.
, and
Wang
,
C.
,
2020
, “
Additively Manufactured AlSi10Mg Inherently Stable Thin and Thick-Walled Lattice With Negative Poisson’s Ratio
,”
Compos. Struct.
,
247
, p.
112469
.
You do not currently have access to this content.