Abstract

Bone cutting with high performance material removal is critical for enhancing orthopedic surgery. Ultrasonically assisted cutting (UAC) is an advanced process with the potential to improve the material removal. However, strain and other intermediate variables in bone cutting are difficult to obtain because of the lack of suitable measurement methods, especially for high-frequency vibration-assisted cutting. In this study, digital image correlation (DIC) analysis was applied for the first time to investigate the full-field strain map and the mechanism of crack development during conventional cutting (CC) and ultrasonically assisted cutting of cortical bone. A novel method for calculating cutting and thrust forces under the mixed fracture mode of bone was also proposed. Extensive experimental results showed that the average strain and strain rate of cortical bone decreased after the application of UAC, but the maximum transient strain rate in UAC was greater than that in CC, and the crack-affected area and shear band width in UAC were smaller than those in CC. In addition, the strain parameters obtained by the DIC analysis were used to calculate the cutting and thrust forces in the hybrid fracture mode. The calculated values of forces matched well (over 90%) with the measured results, indicating the strong feasibility of DIC applications in orthogonal bone cutting research. This study has significant theoretical and practical value since it reveals the fracture mechanism of cortical bone in UAC, demonstrates a non-contact full-field measurement method for tissue strain calculation, and provides inspiration for optimizing the design of innovative orthopedic instruments.

References

1.
Wang
,
X. D.
,
Masilamani
,
N. S.
,
Mabrey
,
J. D.
,
Alder
,
M. E.
, and
Agrawal
,
C. M.
,
1998
, “
Changes in the Fracture Toughness of Bone May Not Be Reflected in Its Mineral Density, Porosity, and Tensile Properties
,”
Bone
,
23
(
1
), pp.
67
72
.
2.
Tahmasbi
,
V.
,
Qasemi
,
M.
,
Ghasemi
,
R.
, and
Gholami
,
R.
,
2022
, “
Experimental Study and Sensitivity Analysis of Force Behavior in Cortical Bone Milling
,”
Med. Eng. Phys.
,
105
(
7
), p.
103821
.
3.
Bai
,
L.
,
Yang
,
J.
,
Chen
,
X.
,
Sun
,
Y.
, and
Li
,
X.
,
2019
, “
Medical Robotics in Bone Fracture Reduction Surgery: A Review
,”
Sensors
,
19
(
16
), p.
3593
.
4.
Abdel-Wahab
,
A. A.
,
Maligno
,
A. R.
, and
Silberschmidt
,
V. V.
,
2012
, “
Micro-Scale Modelling of Bovine Cortical Bone Fracture: Analysis of Crack Propagation and Microstructure Using X-FEM
,”
Comput. Mater. Sci.
,
52
(
1
), pp.
128
135
.
5.
Zhang
,
Y.
,
Robles-Linares
,
J. A.
,
Chen
,
L.
,
Liao
,
Z.
,
Shih
,
A. J.
, and
Wang
,
C.
,
2022
, “
Advances in Machining of Hard Tissues–From Material Removal Mechanisms to Tooling Solutions
,”
Int. J. Mach. Tools Manuf.
,
172
(
1
), p.
103838
.
6.
Jacobs
,
C. H.
,
Pope
,
M. H.
,
Berry
,
J. T.
, and
Hoaglund
,
F.
,
1974
, “
A Study of the Bone Machining Process—Orthogonal Cutting
,”
J. Biomech.
,
7
(
2
), pp.
131
136
.
7.
Wiggins
,
K.
, and
Malkin
,
S.
,
1978
, “
Orthogonal Machining of Bone
,”
J. Biomech.
,
100
(
3
), pp.
122
130
.
8.
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2009
, “
Specifications for Machining the Bovine Cortical Bone in Relation to Its Microstructure
,”
J. Biomech.
,
42
(
16
), pp.
2826
2829
.
9.
Liao
,
Z.
, and
Axinte
,
D. A.
,
2016
, “
On Chip Formation Mechanism in Orthogonal Cutting of Bone
,”
Int. J. Mach. Tools Manuf.
,
102
(
3
), pp.
41
55
.
10.
Chen
,
P.
,
Sui
,
J.
, and
Wang
,
C.
,
2020
, “
Cutting Force Analysis of Bovine Acetabular Cartilage
,”
Procedia CIRP
,
89
, pp.
189
193
.
11.
Bai
,
W.
,
Shu
,
L.
,
Sun
,
R.
,
Xu
,
J.
,
Silberschmidt
,
V. V.
, and
Sugita
,
N.
,
2020
, “
Improvements of Material Removal in Cortical Bone via Impact Cutting Method
,”
J. Mech. Behav. Biomed. Mater.
,
108
(
8
), p.
103791
.
12.
Luo
,
Y.
,
Ren
,
Y.
,
Shu
,
Y.
,
Mao
,
C.
,
Zhou
,
Z.
, and
Bi
,
Z.
,
2022
, “
Cutting Behavior of Cortical Bone in Different Bone Osteon Cutting Angles and Depths of Cut
,”
Chin. J. Mech. Eng.
,
35
(
7
), pp.
1
12
.
13.
Sugita
,
N.
,
Ishii
,
K.
,
Sui
,
J.
, and
Terashima
,
M.
,
2014
, “
Multi-Grooved Cutting Tool to Reduce Cutting Force and Temperature During Bone Machining
,”
CIRP Ann.
,
63
(
1
), pp.
101
104
.
14.
Liao
,
Z.
,
Axinte
,
D. A.
, and
Gao
,
D.
,
2017
, “
A Novel Cutting Tool Design to Avoid Surface Damage in Bone Machining
,”
Int. J. Mach. Tools Manuf.
,
116
(
5
), pp.
52
59
.
15.
Giovannini
,
M.
,
Ren
,
H.
,
Cao
,
J.
, and
Ehmann
,
K.
,
2018
, “
Study on Design and Cutting Parameters of Rotating Needles for Core Biopsy
,”
J. Mech. Behav. Biomed. Mater.
,
86
(
10
), pp.
43
54
.
16.
Sui
,
J.
,
Wang
,
C.
, and
Sugita
,
N.
,
2020
, “
Experimental Study of Temperature Rise During Bone Drilling Process
,”
Med. Eng. Phys.
,
78
(
4
), pp.
64
73
.
17.
Zhang
,
Y.
,
Xu
,
L.
,
Wang
,
C.
,
Chen
,
Z.
,
Han
,
S.
,
Chen
,
B.
, and
Chen
,
J.
,
2019
, “
Mechanical and Thermal Damage in Cortical Bone Drilling In Vivo
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
233
(
6
), pp.
621
635
.
18.
Shih
,
A. J.
,
Tai
,
B. L.
, and
Li
,
R.
,
2019
,
Metal and Bone Drilling-The Thermal Aspects
,
Springer
,
New York
.
19.
Singh
,
R. P.
,
Pandey
,
P. M.
, and
Mridha
,
A. R.
,
2020
, “
An In-Vitro Study of Temperature Rise During Rotary Ultrasonic Bone Drilling of Human Bone
,”
Med. Eng. Phys.
,
79
(
5
), pp.
33
43
.
20.
Banerjee
,
S.
,
Pantawane
,
M. V.
, and
Dahotre
,
N. B.
,
2021
, “
Laser Fabrication of Structural Bone: Surface Morphology and Biomineralization Assessment
,”
Lasers Med. Sci.
,
36
(
1
), pp.
131
137
.
21.
Hloch
,
S.
,
Kľoc
,
J.
,
Hreha
,
P.
,
Magurová
,
D.
,
Kozak
,
D.
, and
Knapčíková
,
L.
,
2013
, “
Water Jet Technology Using in Orthopaedic Surgery
,”
4th International Scientific and Expert Conference TEAM 2012
,
Slavonski Brod, Croatia
.
22.
Kumar
,
V.
,
Neradi
,
D.
,
Salaria
,
A. K.
,
Dagar
,
A.
,
Singh Dhatt
,
S.
, and
Jindal
,
K.
,
2020
, “
Role of Ultrasonic Bone Scalpel in Spine Surgery: A Review Article
,”
SN Compr. Clin. Med.
,
2
(
10
), pp.
1883
1889
.
23.
Cardoni
,
A.
,
MacBeath
,
A.
, and
Lucas
,
M.
,
2006
, “
Methods for Reducing Cutting Temperature in Ultrasonic Cutting of Bone
,”
Ultrasonics
,
44
(
12
), pp.
e37
e42
.
24.
Alam
,
K.
,
Khan
,
M.
, and
Silberschmidt
,
V. V.
,
2013
, “
Analysis of Forces in Conventional and Ultrasonically Assisted Plane Cutting of Cortical Bone
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
227
(
6
), pp.
636
642
.
25.
Ying
,
Z.
,
Shu
,
L.
, and
Sugita
,
N.
,
2020
, “
Experimental and Finite Element Analysis of Force and Temperature in Ultrasonic Vibration Assisted Bone Cutting
,”
Ann. Biomed. Eng.
,
48
(
4
), pp.
1281
1290
.
26.
Sugita
,
N.
,
Shu
,
L.
,
Shimada
,
T.
,
Oshima
,
M.
,
Kizaki
,
T.
, and
Mitsuishi
,
M.
,
2017
, “
Novel Surgical Machining via an Impact Cutting Method Based on Fracture Analysis With a Discontinuum Bone Model
,”
CIRP Ann.
,
66
(
1
), pp.
65
68
.
27.
Shu
,
L.
, and
Sugita
,
N.
,
2020
, “
Analysis of Fracture, Force, and Temperature in Orthogonal Elliptical Vibration-Assisted Bone Cutting
,”
J. Mech. Behav. Biomed. Mater.
,
103
(
3
), p.
103599
.
28.
Peters
,
W.
, and
Ranson
,
W.
,
1982
, “
Digital Imaging Techniques in Experimental Stress Analysis
,”
Opt. Eng.
,
21
(
3
), pp.
427
431
.
29.
Chu
,
T. C.
,
Ranson
,
W. F.
, and
Sutton
,
M. A.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
(
3
), pp.
232
244
.
30.
Bruck
,
H. A.
,
McNeill
,
S. R.
,
Sutton
,
M. A.
, and
Peters
,
W. H.
,
1989
, “
Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction
,”
Exp. Mech.
,
29
(
3
), pp.
261
267
.
31.
Pan
,
B.
,
Li
,
K.
, and
Tong
,
W.
,
2013
, “
Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations
,”
Exp. Mech.
,
53
(
7
), pp.
1277
1289
.
32.
Outeiro
,
J. C.
,
Campocasso
,
S.
,
Denguir
,
L. A.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Poulachon
,
G.
,
2015
, “
Experimental and Numerical Assessment of Subsurface Plastic Deformation Induced by OFHC Copper Machining
,”
CIRP Ann.
,
64
(
1
), pp.
53
56
.
33.
Baizeau
,
T.
,
Campocasso
,
S.
,
Fromentin
,
G.
,
Rossi
,
F.
, and
Poulachon
,
G.
,
2015
, “
Effect of Rake Angle on Strain Field During Orthogonal Cutting of Hardened Steel With c-BN Tools
,”
Procedia CIRP
,
31
, pp.
166
171
.
34.
Baizeau
,
T.
,
Campocasso
,
S.
,
Rossi
,
F.
,
Poulachon
,
G.
, and
Hild
,
F.
,
2016
, “
Cutting Force Sensor Based on Digital Image Correlation for Segmented Chip Formation Analysis
,”
J. Mater. Process. Technol.
,
238
(
12
), pp.
466
473
.
35.
Harzallah
,
M.
,
Pottier
,
T.
,
Gilblas
,
R.
,
Landon
,
Y.
,
Mousseigne
,
M.
, and
Senatore
,
J.
,
2018
, “
A Coupled In-Situ Measurement of Temperature and Kinematic Fields in Ti-6Al-4V Serrated Chip Formation at Micro-Scale
,”
Int. J. Mach. Tools Manuf.
,
130–131
(
8
), pp.
20
35
.
36.
Davis
,
B.
,
Dabrow
,
D.
,
Ifju
,
P.
,
Xiao
,
G.
,
Liang
,
S. Y.
, and
Huang
,
Y.
,
2018
, “
Study of the Shear Strain and Shear Strain Rate Progression During Titanium Machining
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051007
.
37.
Bergs
,
T.
,
Abouridouane
,
M.
,
Meurer
,
M.
, and
Peng
,
B.
,
2021
, “
Digital Image Correlation Analysis and Modelling of the Strain Rate in Metal Cutting
,”
CIRP Ann.
,
70
(
1
), pp.
45
48
.
38.
Miao
,
S.
,
Pan
,
P.-Z.
,
Zhao
,
S.
,
Han
,
J.
, and
Konicek
,
P.
,
2021
, “
A New DIC-Based Method to Identify the Crack Mechanism and Applications in Fracture Analysis of Red Sandstone Containing a Single Flaw
,”
Rock Mech. Rock Eng.
,
54
(
8
), pp.
3847
3871
.
39.
Rauch
,
F.
,
Travers
,
R.
, and
Glorieux
,
F. H.
,
2007
, “
Intracortical Remodeling During Human Bone Development—A Histomorphometric Study
,”
Bone
,
40
(
2
), pp.
274
280
.
40.
Taylor
,
D.
,
Hazenberg
,
J. G.
, and
Lee
,
T. C.
,
2007
, “
Living With Cracks: Damage and Repair in Human Bone
,”
Nat. Mater.
,
6
(
4
), pp.
263
268
.
41.
Marco
,
M.
,
Rodríguez-Millán
,
M.
,
Santiuste
,
C.
,
Giner
,
E.
, and
Miguélez
,
M. H.
,
2015
, “
A Review on Recent Advances in Numerical Modelling of Bone Cutting
,”
J. Mech. Behav. Biomed. Mater.
,
44
(
4
), pp.
179
201
.
42.
Levengood
,
S. K. L.
, and
Zhang
,
M.
,
2014
, “
Chitosan-Based Scaffolds for Bone Tissue Engineering
,”
J. Mater. Chem. B
,
2
(
21
), pp.
3161
3184
.
43.
Idkaidek
,
A.
,
Koric
,
S.
, and
Jasiuk
,
I.
,
2018
, “
Fracture Analysis of Multi-Osteon Cortical Bone Using XFEM
,”
Comput. Mech.
,
62
(
2
), pp.
171
184
.
44.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1974
, “
The Mechanical Properties of Cortical Bone
,”
JBJS
,
56
(
5
), pp.
1001
1022
.
45.
Pan
,
B.
,
Qian
,
K.
,
Xie
,
H.
, and
Asundi
,
A.
,
2009
, “
Two-Dimensional Digital Image Correlation for In-Plane Displacement and Strain Measurement: A Review
,”
Meas. Sci. Technol.
,
20
(
6
), p.
062001
.
46.
Bai
,
W.
,
Shu
,
L.
,
Sun
,
R.
,
Xu
,
J.
,
Silberschmidt
,
V. V.
, and
Sugita
,
N.
,
2020
, “
Mechanism of Material Removal in Orthogonal Cutting of Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
104
(
4
), p.
103618
.
47.
Dong
,
X. N.
,
Zhang
,
X.
, and
Guo
,
X. E.
,
2005
, “
Interfacial Strength of Cement Lines in Human Cortical Bone
,”
Mol. Cell. Biomech.
,
2
(
2
), pp.
63
65
.
48.
Wang
,
Q.
,
Shankar
,
R. M.
,
Liu
,
Z.
, and
Cheng
,
Y.
,
2022
, “
Crystallographic Texture Evolutions of Ti-6Al-4V Chip Foils in Relation to Strain Path and High Strain Rate Arising From Large Strain Extrusion Machining Process
,”
J. Mater. Process. Technol.
,
305
(
7
), p.
117588
.
49.
Peterlik
,
H.
,
Roschger
,
P.
,
Klaushofer
,
K.
, and
Fratzl
,
P.
,
2006
, “
From Brittle to Ductile Fracture of Bone
,”
Nat. Mater.
,
5
(
1
), pp.
52
55
.
50.
Zimmermann
,
E. A.
,
Launey
,
M. E.
, and
Ritchie
,
R. O.
,
2010
, “
The Significance of Crack-Resistance Curves to the Mixed-Mode Fracture Toughness of Human Cortical Bone
,”
Biomaterials
,
31
(
20
), pp.
5297
5305
.
51.
O’Brien
,
F. J.
,
Brennan
,
O.
,
Kennedy
,
O. D.
, and
Lee
,
T. C.
,
2005
, “
Microcracks in Cortical Bone: How Do They Affect Bone Biology?
,”
Curr. Osteoporos. Rep.
,
3
(
2
), pp.
39
45
.
52.
Ernst
,
H.
, and
Merchant
,
M. E.
,
1941
,
Surface Treatment of Metals American Society for Metals
, Vol.
29
, pp.
299
378
.
53.
Moufki
,
A.
,
Molinari
,
A.
, and
Dudzinski
,
D.
,
1998
, “
Modelling of Orthogonal Cutting With a Temperature Dependent Friction Law
,”
J. Mech. Phys. Solids
,
46
(
10
), pp.
2103
2138
.
54.
Zimmermann
,
E. A.
,
Schaible
,
E.
,
Bale
,
H.
,
Barth
,
H. D.
,
Tang
,
S. Y.
,
Reichert
,
P.
,
Busse
,
B.
,
Alliston
,
T.
,
Ager
,
J. W.
, III
, and
Ritchie
,
R. O.
,
2011
, “
Age-Related Changes in the Plasticity and Toughness of Human Cortical Bone at Multiple Length Scales
,”
Proc. Natl. Acad. Sci.
,
108
(
35
), pp.
14416
14421
.
55.
Remache
,
D.
,
Semaan
,
M.
,
Rossi
,
J.-M.
,
Pithioux
,
M.
, and
Milan
,
J.-L.
,
2020
, “
Application of the Johnson-Cook Plasticity Model in the Finite Element Simulations of the Nanoindentation of the Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
101
(
1
), p.
103426
.
56.
Johnson
,
G. R.
, and
Cook
,
W.H.
,
1983
, “
A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Eng. Frac. Mech.
,
21
, pp.
541
548
.
57.
Novitskaya
,
E.
,
Chen
,
P.-Y.
,
Lee
,
S.
,
Castro-Ceseña
,
A.
,
Hirata
,
G.
,
Lubarda
,
V. A.
, and
McKittrick
,
J.
,
2011
, “
Anisotropy in the Compressive Mechanical Properties of Bovine Cortical Bone and the Mineral and Protein Constituents
,”
Acta Biomater.
,
7
(
8
), pp.
3170
3177
.
58.
Manilay
,
Z.
,
Novitskaya
,
E.
,
Sadovnikov
,
E.
, and
McKittrick
,
J.
,
2013
, “
A Comparative Study of Young and Mature Bovine Cortical Bone
,”
Acta Biomater.
,
9
(
2
), pp.
5280
5288
.
59.
Mann
,
K. A.
,
Allen
,
M. J.
, and
Ayers
,
D. C.
,
1998
, “
Pre-Yield and Post-Yield Shear Behavior of the Cement-Bone Interface
,”
J. Orthop. Res.
,
16
(
3
), pp.
370
378
.
60.
Alam
,
K.
,
Mitrofanov
,
A.
, and
Silberschmidt
,
V. V.
,
2009
, “
Finite Element Analysis of Forces of Plane Cutting of Cortical Bone
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
738
743
.
61.
Khurshid
,
A.
,
Mitrofanov
,
A.
, and
Silberschmidt
,
V.
,
2010
, “
Thermal Analysis of Orthogonal Cutting of Cortical Bone Using Finite Element Simulations
,”
Int. J. Exp. Comput. Biomech.
,
1
(
3
), pp.
236
251
.
62.
Ferreira
,
F.
,
Vaz
,
M.
, and
Simões
,
J.
,
2006
, “
Mechanical Properties of Bovine Cortical Bone at High Strain Rate
,”
Mater. Charact.
,
57
(
2
), pp.
71
79
.
63.
Li
,
S.
,
Demirci
,
E.
, and
Silberschmidt
,
V. V.
,
2013
, “
Variability and Anisotropy of Mechanical Behavior of Cortical Bone in Tension and Compression
,”
J. Mech. Behav. Biomed. Mater.
,
21
, pp.
109
120
.
64.
Bai
,
W.
,
Roy
,
A.
,
Guo
,
L.
,
Xu
,
J.
, and
Silberschmidt
,
V. V.
,
2021
, “
Analytical Prediction of Shear Angle and Frictional Behaviour in Vibration-Assisted Cutting
,”
J. Manuf. Processes
,
62
, pp.
37
46
.
You do not currently have access to this content.