Abstract

The desire for thin-film silicon is motivated by the growing needs for flexible electronics, compact packaging, and advanced solar power. In previous work we have presented exfoliation as means to a cost effective way to achieve thin-film silicon and described an open loop prototype exfoliation tool that could be used to produce improved films compared to previous methods. However, controllable film thickness, film uniformity, and surface roughness were all challenges with the open loop setup. This paper describes the design, construction, and testing of an improved controlled exfoliation tool with load compensation and inline metrology for closed loop control of the exfoliation process. The exfoliation performance results are compared to those from the proof-of-concept tool and show 53% improvement in silicon uniformity and 67% improvement in average surface roughness. These improvements can be attributed to the addition of load compensation and the improvement in the precision motion of the stage, respectively.

References

1.
Gu
,
Y.
,
Zhang
,
T.
,
Chen
,
H.
,
Wang
,
F.
,
Pu
,
Y.
,
Gao
,
C.
, and
Li
,
S.
,
2019
, “
Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information
,”
Nanoscale Res. Lett.
,
14
(
1
), p.
263
.
2.
Ying
,
M.
,
Bonifas
,
A. P.
,
Lu
,
N.
,
Su
,
Y.
,
Li
,
R.
,
Cheng
,
H.
,
Ameen
,
A.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Silicon Nanomembranes for Fingertip Electronics
,”
Nanotechnology
,
23
(
34
), p.
344004
.
3.
Kim
,
J.
,
Lee
,
M.
,
Shim
,
H. J.
,
Ghaffari
,
R.
,
Cho
,
H. R.
,
Son
,
D.
,
Jung
,
Y. H.
,
Soh
,
M.
,
Choi
,
C.
,
Jung
,
S.
,
Chu
,
K.
,
Jeon
,
D.
,
Lee
,
S.-T.
,
Kim
,
J. H.
,
Choi
,
S. H.
,
Hyeon
,
T.
, and
Kim
,
D.-H.
,
2014
, “
Stretchable Silicon Nanoribbon Electronics for Skin Prosthesis
,”
Nat. Commun.
,
5
(
5747
).
4.
Ha
,
M.-H.
,
Choi
,
J.-K.
,
Park
,
B.-M.
, and
Han
,
K.-Y.
,
2021
, “
Highly Flexible Cover Window Using Ultra-thin Glass for Foldable Displays
,”
J. Mech. Sci. Technol.
,
35
(
2
), pp.
661
668
.
5.
Kireev
,
D.
,
Seyock
,
S.
,
Ernst
,
M.
,
Maybeck
,
V.
,
Wolfrum
,
B.
, and
Offenhäusser
,
A.
,
2016
, “
Versatile Flexible Graphene Multielectrode Arrays
,”
Biosensors
,
7
(
4
), p.
1
.
6.
Yoon
,
J.
,
Cho
,
H.-Y.
,
Shin
,
M.
,
Choi
,
H. K.
,
Lee
,
T.
, and
Choi
,
J.-W.
,
2020
, “
Flexible Electrochemical Biosensors for Healthcare Monitoring
,”
J. Mater. Chem. B
,
8
(
33
), pp.
7303
7318
.
7.
Park
,
H.
,
Lee
,
Y.
,
Kim
,
N.
,
Seo
,
D.
,
Go
,
G.
, and
Lee
,
T.
,
2020
, “
Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics
,”
Adv. Mater.
,
32
(
15
), p.
1903558
.
8.
Kim
,
T. S.
,
Kim
,
H. J.
,
Geum
,
D.-M.
,
Han
,
J.-H.
,
Kim
,
I. S.
,
Hong
,
N.
,
Ryu
,
G. H.
,
Kang
,
J.
,
Choi
,
W. J.
, and
Yu
,
K. J.
,
2021
, “
Ultra-Lightweight, Flexible InGaP/GaAs Tandem Solar Cells With a Dual-Function Encapsulation Layer
,”
ACS Appl. Mater. Interfaces
,
13
(
11
), pp.
13248
13253
.
9.
Pudasaini
,
P. R.
,
Sharma
,
M.
,
Ruiz-Zepeda
,
F.
, and
Ayon
,
A. A.
,
2014
, “
Ultrathin, Flexible, Hybrid Solar Cells in Sub-Ten Micrometers Single Crystal Silicon Membrane
,”
2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)
,
Denver, CO
,
June 8–13
, IEEE Silver Spring, MD, pp.
0953
0955
.
10.
Ahn
,
J.
,
Chou
,
H.
, and
Banerjee
,
S. K.
,
2017
, “
Graphene-Al2O3-silicon Heterojunction Solar Cells on Flexible Silicon Substrates
,”
J. Appl. Phys.
,
121
(
16
), p.
163105
.
11.
Pagliaro
,
M.
,
Ciriminna
,
R.
, and
Palmisano
,
G.
,
2008
, “
Flexible Solar Cells
,”
ChemSusChem
,
1
(
11
), pp.
880
891
.
12.
Laflamme
,
S.
,
Kollosche
,
M.
,
Connor
,
J. J.
, and
Kofod
,
G.
,
2013
, “
Robust Flexible Capacitive Surface Sensor for Structural Health Monitoring Applications
,”
J. Eng. Mech.
,
139
(
7
), pp.
879
885
.
13.
Huang
,
S.
,
Liu
,
Y.
,
Zhao
,
Y.
,
Ren
,
Z.
, and
Guo
,
C. F.
,
2019
, “
Flexible Electronics: Stretchable Electrodes and Their Future
,”
Adv. Funct. Mater.
,
29
(
6
), p.
1805924
.
14.
Corzo
,
D.
,
Tostado-Blázquez
,
G.
, and
Baran
,
D.
,
2020
, “
Flexible Electronics: Status, Challenges and Opportunities
,”
Front. Electron.
,
1
, p.
594003
.
15.
Banerjee
,
G.
, and
Rhoades
,
R. L.
,
2019
, “
Chemical Mechanical Planarization Historical Review and Future Direction
,”
ECS Trans.
,
13
(
4
), pp.
1
19
.
16.
Williams
,
J. S.
,
1998
, “
Ion Implantation of Semiconductors
,”
Mater. Sci. Eng. A.
,
253
(
1-2
), pp.
8
15
.
17.
Bedell
,
S. W.
,
Fogel
,
K.
,
Lauro
,
P.
,
Shahrjerdi
,
D.
,
Ott
,
J. A.
, and
Sadana
,
D.
,
2013
, “
Layer Transfer by Controlled Spalling
,”
J. Phys. D: Appl. Phys.
,
46
(
15
), p.
152002
.
18.
Kashyap
,
K.
,
Lai
,
D.-Y.
,
Zheng
,
L.-C.
,
Hou
,
M. T.
, and
Yeh
,
J. A.
,
2015
, “
Rollable Silicon IC Wafers Achieved by Backside Nanotexturing
,”
IEEE Electron. Device Lett.
,
36
(
8
), pp.
829
831
.
19.
Thouless
,
M. D.
,
Evans
,
A. G.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1987
, “
The Edge Cracking and Spalling of Brittle Plates
,”
Acta. Metall.
,
35
(
6
), pp.
1333
1341
.
20.
Hensen
,
J.
,
Niepelt
,
R.
,
Kajari-Schroder
,
S.
, and
Brendel
,
R.
,
2015
, “
Directional Heating and Cooling for Controlled Spalling
,”
IEEE J. Photovoltaics
,
5
(
1
), pp.
195
201
.
21.
Zhai
,
Y.
,
Mathew
,
L.
,
Rao
,
R.
,
Xu
,
D.
, and
Banerjee
,
S. K.
,
2012
, “
High-Performance Flexible Thin-Film Transistors Exfoliated From Bulk Wafer
,”
Nano Lett.
,
12
(
11
), pp.
5609
5615
.
22.
Bedell
,
S. W.
,
Shahrjerdi
,
D.
,
Hekmatshoar
,
B.
,
Fogel
,
K.
,
Lauro
,
P. A.
,
Ott
,
J. A.
,
Sosa
,
N.
, and
Sadana
,
D.
,
2012
, “
Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies
,”
IEEE J. Photovoltaics
,
2
(
2
), pp.
141
147
.
23.
Ward
,
M.
, and
Cullinan
,
M.
,
2019
, “
Design of Tool for Exfoliation of Monocrystalline Microscale Silicon Films
,”
ASME J. Micro Nano-Manufacturing
,
7
(
1
), p.
011003
.
24.
Ward
,
M.
, and
Cullinan
,
M.
,
2019
, “
A Fracture Model for Exfoliation of Thin Silicon Films
,”
Int. J. Fract.
,
216
, pp.
161
171
.
25.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach Learning Res.
,
12
, pp.
2825
2830
.
26.
Buitinck
,
L.
,
Louppe
,
G.
,
Blondel
,
M.
,
Pedregosa
,
F.
,
Mueller
,
A.
,
Grisel
,
O.
,
Niculae
,
V.
,
Prettenhofer
,
P.
,
Gramfort
,
A.
,
Grobler
,
J.
,
Layton
,
R.
,
Vanderplas
,
J.
,
Joly
,
A.
,
Holt
,
B.
, and
Varoquaux
,
G.
,
2013
, “
API Design for Machine Learning Software: Experiences From the Scikit-Learn Project
,” arXiv: 1309.0238.
27.
UT-NDML Si-Exfo
,” Original-date: 2020-08-08T21:07:43Z. 2022-02-03, https://github.com/UT-NDML/Si-Exfo. Accessed March 2, 2022.
28.
Ward
,
M.
,
2018
, “
Wafer Scale Exfoliation of Monocrystalline Micro-Scale Silicon Films
,” Thesis, https://repositories.lib.utexas.edu/handle/2152/69093, Accessed November 13, 2018.
You do not currently have access to this content.