Abstract

In this study, a novel design scheme for a power skiving cutter and its grinding wheel profile is proposed based on the geometry of a target circular spline (CS) workpiece. First, a generalized mathematical model of a target CS profile is expressed using a B-spline curve. Subsequently, the nominal cutting edge of the skiving cutter for generating an error-free CS is derived based on power skiving kinematics. In addition, the axial profile of the grinding wheel for generating the derived nominal cutting edge is resolved based on lengthwise-reciprocating grinding kinematics. The proposed design process for the skiving cutter and its grinding wheel is illustrated using numerical examples. The profile accuracy of the CS yielded by the designed nominal cutting edge is computed to validate the proposed design processes. Moreover, errors of the skived CS profile resulting from various resharpening depths by grinding back the stepped rake face of the skiving cutter are investigated. Finally, to effectively extend the tool life of the skiving cutter, a compensation rolling angle is introduced into the CS skiving process.

References

1.
Chen
,
Y.-C.
,
Cheng
,
Y.-H.
,
Tseng
,
J.-T.
, and
Hsieh
,
K.-J.
,
2017
, “
Study of a Harmonic Drive With Involute Profile Flexspline by Two-Dimensional Finite Element Analysis
,”
Eng. Comput.
,
34
(
7
), pp.
2107
2130
.
2.
Yu
,
Z.
,
Ling
,
S.
,
Wang
,
X.
, and
Wang
,
L.
,
2021
, “
Study on Tooth Profile Design of Harmonic Drive With Deformation Model of Flexspline
,”
Meccanica
,
56
(
7
), pp.
1883
1904
.
3.
Song
,
C.
,
Li
,
X.
,
Yang
,
Y.
, and
Sun
,
J.
,
2022
, “
Parameter Design of Double-Circular-Arc Tooth Profile and Its Influence on Meshing Characteristics of Harmonic Drive
,”
Mech. Mach. Theory
,
167
, p.
104567
.
4.
Chen
,
Y.-C.
,
Cheng
,
Y.-H.
,
Tseng
,
J.-T.
, and
Hsieh
,
K.-J.
,
2019
, “
Tooth Geometry Design and Two-Dimensional Finite Element Analysis for a Strain Wave Gear With Double-Circular-Arc Profile
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Anaheim, CA
,
Aug. 18–21
,
p. V010T11A030
.
5.
Yao
,
Y.
,
Chen
,
X.
, and
Xing
,
J.
,
2020
, “
Tooth Effects on Assembling Bending Stress of Flexible Tooth Rim in Harmonic Drive
,”
Mech. Mach. Theory
,
150
, p.
103871
.
6.
Zhang
,
Y.
,
Wang
,
G.
,
Pan
,
X.
, and
Li
,
Y.
,
2022
, “
Calculating the Load Distribution and Contact Stress of the Disposable Harmonic Drive Under Full Load
,”
Machines
,
10
(
2
), p.
96
.
7.
Falbriard
,
P.
, and
Baour
,
H.
,
2019
, “
Micro-Skiving—(R)Evolution of a Known Production Process
,”
Proceedings of the American Gear Manufacturers Association Fall Technical Meeting
,
Detroit, MI
,
Oct. 14–16
, pp.
279
297
.
8.
Kobialka
,
C.
,
2012
, “
Contemporary Gear Pre-Machining Solutions
,”
Proceedings of the American Gear Manufacturers Association Fall Technical Meeting
,
Detroit, MI
,
Oct 28–30
, pp.
152
161
.
9.
Berger
,
M.
,
Doerr
,
S.
, and
Gruenberg
,
M.
,
2020
, “
Power Skiving: High Quality, Productivity, and Cost Efficiency in Gear Cutting
,” Gear Solutions, pp.
36
41
.
10.
Seibicke
,
F.
, and
Müller
,
H.
,
2013
, “
Good Things Need Some Time
,” Gear Solutions, pp.
74
80
.
11.
Stadtfeld
,
H. J.
,
2013
, “
Power Skiving of Cylindrical Gears on Different Machine Platforms
,”
Proceedings of the American Gear Manufacturers Association Fall Technical Meeting
,
Indianapolis, IN
,
Sept. 15–17
, pp.
1
18
.
12.
Tsai
,
C.-Y.
,
2016
, “
Mathematical Model for Design and Analysis of Power Skiving Tool for Involute Gear Cutting
,”
Mech. Mach. Theory
,
101
, pp.
195
208
.
13.
Moriwaki
,
I.
,
Osafune
,
T.
,
Nakamura
,
M.
,
Funamoto
,
M.
,
Uriu
,
K.
,
Murakami
,
T.
,
Nagata
,
E.
,
Kurita
,
N.
,
Tachikawa
,
T.
, and
Kobayashi
,
Y.
,
2017
, “
Cutting Tool Parameters of Cylindrical Skiving Cutter With Sharpening Angle for Internal Gears
,”
ASME J. Mech. Des.
,
139
(
3
), p.
033301
.
14.
Jia
,
K.
,
Zheng
,
S.
,
Guo
,
J.
, and
Hong
,
J.
,
2019
, “
A Surface Enveloping-Assisted Approach on Cutting Edge Calculation and Machining Process Simulation for Skiving
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1635
1645
.
15.
Tachikawa
,
T.
,
Kurita
,
N.
,
Nakamura
,
M.
,
Iba
,
D.
, and
Moriwaki
,
I.
,
2015
, “
Calculation Model for Internal Gear Skiving With a Pinion-Type Cutter Having Pitch Deviation and a Run-Out
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Boston, MA
,
Aug. 2–5
,
p. V010T11A033
.
16.
Guo
,
Z.
,
Mao
,
S.-M.
,
Li
,
X.-E.
, and
Ren
,
Z.-Y.
,
2016
, “
Research on the Theoretical Tooth Profile Errors of Gears Machined by Skiving
,”
Mech. Mach. Theory
,
97
, pp.
1
11
.
17.
Zheng
,
F.
,
Zhang
,
M.
,
Zhang
,
W.
, and
Guo
,
X.
,
2018
, “
Research on the Tooth Modification in Gear Skiving
,”
ASME J. Mech. Des.
,
140
(
8
), p.
084502
.
18.
Guo
,
E.
,
Ren
,
N.
,
Liu
,
Z.
, and
Zheng
,
X.
,
2019
, “
Influence of Sensitive Pose Errors on Tooth Deviation of Cylindrical Gear in Power Skiving
,”
Adv. Mech. Eng.
,
11
(
4
), pp.
1
12
.
19.
Ren
,
Z.
,
Fang
,
Z.
,
Kobayashi
,
G.
,
Kizaki
,
T.
,
Sugita
,
N.
,
Nishikawa
,
T.
,
Kugo
,
J.
, and
Nabata
,
E.
,
2020
, “
Influence of Tool Eccentricity on Surface Roughness in Gear Skiving
,”
Precis. Eng.
,
63
, pp.
170
176
.
20.
Chen
,
X.-C.
,
Li
,
J.
,
Zou
,
Y.
, and
Wang
,
P.
,
2014
, “
A Study on the Grinding of the Major Flank Face of Error-Free Spur Slice Cutter
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1–4
), pp.
425
438
.
21.
Luu
,
T.-T.
, and
Wu
,
Y.-R.
,
2022
, “
A Novel Correction Method to Attain Even Grinding Allowance in CNC Gear Skiving Process
,”
Mech. Mach. Theory
,
171
, p.
104771
.
22.
Guo
,
H.
,
Ma
,
T.
,
Zhang
,
S.
,
Zhao
,
N.
, and
Fuentes-Aznar
,
A.
,
2022
, “
Computerized Generation and Surface Deviation Correction of Face Gear Drives Generated by Skiving
,”
Mech. Mach. Theory
,
173
, p.
104839
.
23.
Shih
,
Y.-P.
, and
Li
,
Y.-J.
,
2018
, “
A Novel Method for Producing a Conical Skiving Tool With Error-Free Flank Faces for Internal Gear Manufacture
,”
ASME J. Mech. Des.
,
140
(
4
), p.
043302
.
24.
Tsai
,
C.-Y.
,
2021
, “
Power-Skiving Tool Design Method for Interference-Free Involute Internal Gear Cutting
,”
Mech. Mach. Theory
,
164
, p.
104396
.
25.
Shih
,
Y.-P.
,
Li
,
Y.-J.
,
Lin
,
Y.-C.
, and
Tsao
,
H.-Y.
,
2022
, “
A Novel Cylindrical Skiving Tool With Error-Free Flank Faces for Internal Circular Splines
,”
Mech. Mach. Theory
,
170
, p.
104662
.
26.
Tsai
,
C.-Y.
,
2022
, “
Simple Mathematical Approach for Analyzing Gear Tooth Profile Errors of Different Gears Cut Using Same Power-Skiving Tool
,”
Mech. Mach. Theory
,
177
, p.
105042
.
27.
Huang
,
C.-L.
, and
Fong
,
Z.-H.
,
2011
, “
Modified-Roll Profile Correction for a Gear Shaping Cutter Made by the Lengthwise-Reciprocating Grinding Process
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041001
.
28.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
29.
Cheng
,
Y.-H.
, and
Chen
,
Y.-C.
,
2022
, “
Design, Analysis, and Optimization of a Strain Wave Gear With a Novel Tooth Profile
,”
Mech. Mach. Theory
,
175
, p.
104953
.
30.
Versprille
,
K. J.
,
1975
, “
Computer-Aided Design Applications of the Rational B-Spline Approximation Form
,”
Ph.D. dissertation
,
Syracuse University
,
Syracuse, NY
.
31.
ANSI/AGMA 1104-A09
,
2009
,
Tolerance Specification for Shaper Cutters
,
American Gear Manufacturers Association
,
Alexandria, VA
.
32.
ISO 1328-1
,
2013
,
Cylindrical Gears—ISO System of Flank Tolerance Classification—Part 1: Definitions and Allowable Values of Deviations Relevant to Flanks of Gear Teeth, Geneva, Switzerland
.
You do not currently have access to this content.