Abstract

Despite the importance of product repairability, current methods for assessing and grading repairability are limited, which hampers the efforts of designers, remanufacturers, original equipment manufacturers (OEMs), and repair shops. To improve the efficiency of assessing product repairability, this study introduces two artificial intelligence (AI) based approaches. The first approach is a supervised learning framework that utilizes object detection on product teardown images to measure repairability. Transfer learning is employed with machine learning architectures such as ConvNeXt, GoogLeNet, ResNet50, and VGG16 to evaluate repairability scores. The second approach is an unsupervised learning framework that combines feature extraction and cluster learning to identify product design features and group devices with similar designs. It utilizes an oriented FAST and rotated BRIEF feature extractor (ORB) along with k-means clustering to extract features from teardown images and categorize products with similar designs. To demonstrate the application of these assessment approaches, smartphones are used as a case study. The results highlight the potential of artificial intelligence in developing an automated system for assessing and rating product repairability.

References

1.
Chakravorti
,
B.
,
2021
, “
How to Close the Digital Divide in the U.S.
,”
Harvard Business Review
, https://hbr.org/2021/07how-to-close-the-digital-divide-in-the-u-s.
2.
US PIRG
,
2021
, “
The Costs of the Digital Divide Are Higher Than Ever. Repair Can Help
,” https://uspirg.org/blogs/blog/usp/costs-digital-di.
3.
Right to Repair
,
2023
,
28 States File Right to Repair Legislation and Other Repair Updates
.
4.
US PIRG
,
2021
, “
Half of U.S. States Looking to Give Americans the Right to Repair
,” https://uspirg.org/blogs/blog/usp/half-us-states-l.
5.
Gault
,
M.
,
2021
, “
Half the Country Is Now Considering Right to Repair Laws
,” https://www.vice.com/en/article/z3vavw/half-the-co.
6.
Bayraktaroglu
,
S.
,
2019
,
Design for Repair as a Strategy to Foster Sustainable User Behavior: A Case of Undergraduate Product Design Studio
.
7.
Vanegas
,
P.
,
Peeters
,
J. R.
,
Cattrysse
,
D.
,
Tecchio
,
P.
,
Ardente
,
F.
,
Mathieux
,
F.
,
Dewulf
,
W.
, and
Duflou
,
J. R.
,
2018
, “
Ease of Disassembly of Products to Support Circular Economy Strategies
,”
Resour. Conserv. Recycl.
,
135
(
June 2017
), pp.
323
334
.
8.
van Schaik
,
A.
, and
Reuter
,
M. A.
,
2010
, “
Dynamic Modelling of E-Waste Recycling System Performance Based on Product Design
,”
Miner. Eng.
,
23
(
3
), pp.
192
210
.
9.
Cordella
,
M.
,
Alfieri
,
F.
,
Clemm
,
C.
, and
Berwald
,
A.
,
2021
, “
Durability of Smartphones: A Technical Analysis of Reliability and Repairability Aspects
,”
J. Clean. Prod.
,
286
, p.
125388
.
10.
De Fazio
,
F.
,
Bakker
,
C.
,
Flipsen
,
B.
, and
Balkenende
,
R.
,
2021
, “
The Disassembly Map: A New Method to Enhance Design for Product Repairability
,”
J. Clean. Prod.
,
320
, p.
128552
.
11.
Sabbaghi
,
M.
,
Esmaeilian
,
B.
,
Cade
,
W.
,
Wiens
,
K.
, and
Behdad
,
S.
,
2016
, “
Business Outcomes of Product Repairability: A Survey-Based Study of Consumer Repair Experiences
,”
Resour. Conserv. Recycl.
,
109
, pp.
114
122
.
12.
Wieser
,
H.
, and
Tröger
,
N.
,
2018
, “
Exploring the Inner Loops of the Circular Economy: Replacement, Repair, and Reuse of Mobile Phones in Austria
,”
J. Clean. Prod.
,
172
, pp.
3042
3055
.
13.
Fang
,
C.-C.
, and
Hsu
,
C.-C.
,
2009
, “
A Study of Making Optimal Marketing and Warranty Decisions for Repairable Products
,”
2009 IEEE International Conference on Industrial Engineering and Engineering Management
,
Hong Kong, China
,
Dec. 8–11
, IEEE, pp.
905
909
.
14.
Gaiardelli
,
P.
,
Cavalieri
,
S.
, and
Saccani
,
N.
,
2009
, “
Exploring the Relationship Between After-Sales Service Strategies and Design for X Methodologies
,”
Int. J. Prod. Lifecycle Manag.
,
3
(
4
), p.
261
.
15.
Preston
,
F.
,
2012
,
Briefing Paper A Global Redesign? Shaping the Circular Economy
.
16.
Cuthbert
,
R.
,
Giannikas
,
V.
,
McFarlane
,
D.
, and
Srinivasan
,
R.
,
2016
,
Repair Services for Domestic Appliances
, Vol.
640
,
Springer, Cham
,
New York
, pp.
31
39
. doi.org/10.1007/978-3-319-30337-6_3
17.
Peck
,
D.
,
Kandachar
,
P.
, and
Tempelman
,
E.
,
2015
, “
Critical Materials From a Product Design Perspective
,”
Mater. Des.
,
65
, pp.
147
159
.
18.
Rosner
,
D. K.
, and
Ames
,
M.
,
2014
, “
Designing for Repair?
Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing—CSCW ‘14
,
New York, NY
,
Feb. 15–19
, pp.
319
331
.
19.
Cairns
,
C. N.
,
2005
, “
E-Waste and the Consumer: Improving Options to Reduce, Reuse and Recycle
,”
Proceedings of the 2005 IEEE International Symposium on Electronics and the Environment
,
New Orleans, LA
,
May 16–19
, pp.
237
242
.
20.
Harjula
,
T.
,
Rapoza
,
B.
,
Knight
,
W. A.
, and
Boothroyd
,
G.
,
1996
, “
Design for Disassembly and the Environment
,”
CIRP Ann.—Manuf. Technol.
,
45
(
1
), pp.
109
114
.
21.
Dana
,
Crowe
,
2001
,
Design for Reliability
,
CRC Press
,
Boca Raton, FL
.
22.
Nee
,
A. Y. C.
,
2015
,
Handbook of Manufacturing Engineering and Technology
,
Springer London
,
London
.
23.
Gaustad
,
G.
,
Olivetti
,
E.
, and
Kirchain
,
R.
,
2010
, “
Design for Recycling
,”
J. Ind. Ecol.
,
14
(
2
), pp.
286
308
.
24.
Herrmann
,
J. W.
,
Cooper
,
J.
,
Gupta
,
S. K.
,
Hayes
,
C. C.
,
Ishii
,
K.
,
Kazmer
,
D.
,
Sandborn
,
P. A.
, and
Wood
,
W. H.
,
2004
, “
New Directions in Design for Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
853
861
.
25.
Sabbaghi
,
M.
,
Cade
,
W.
,
Behdad
,
S.
, and
Bisantz
,
A. M.
,
2017
, “
The Current Status of the Consumer Electronics Repair Industry in the US: A Survey-Based Study
,”
Resour. Conserv. Recycl.
,
116
, pp.
137
151
.
26.
Sabbaghi
,
M.
, and
Behdad
,
S.
,
2017
, “
Optimal Positioning of Product Components to Facilitate Ease-of-Repair
,”
IIE Annual Conference. Proceedings, Institute of Industrial and Systems Engineers (IISE)
,
Pittsburgh, PA
,
May 20–23
, pp.
1000
1005
.
27.
Sabbaghi
,
M.
, and
Behdad
,
S.
,
2018
, “
Consumer Decisions to Repair Mobile Phones and Manufacturer Pricing Policies: The Concept of Value Leakage
,”
Resour. Conserv. Recycl.
,
133
, pp.
101
111
.
28.
2020
, “
Stand up for Your Right to Repair!
,” https://Repair.Eu/What-We-Want/.
29.
Bracquene
,
E.
,
Peeters
,
J.
,
Duflou
,
J.
, and
Dewulf
,
W.
,
2019
, “
Developing Repairability Criteria for Energy Related Products: A Case Study for Vacuum Cleaners and Washing Machines
,”
Plate 2019 Conference
,
Berlin, Germany
,
Sept. 18–20
, pp.
81
85
.
30.
Hughes
,
R.
,
2017
, “
The EU Circular Economy Package–Life Cycle Thinking to Life Cycle Law?
,”
Proc. CIRP
,
61
, pp.
10
16
.
31.
CENELEC
,
2020
, “
A New Series of European Standards Addresses the Material Efficiency of Energy-Related Products
,” https://www.cencenelec.eu/, https://www.cencenelec.eu/news/brief_news/Pages/T.-2020-037.asp.
32.
Purdy
,
K.
,
2021
, “
Apple Is Using France’s New Repairability Scoring—Here’s How It Works
.” iFixit, https://www.ifixit.com/News/49158/france-gave-apple-some-repairability-homework-lets-grade-it.
33.
Purdy
,
K.
,
2021
, “
Why IFixit’s Repair Scores Are Different Than the French Repair Index
.” iFixit, https://www.ifixit.com/News/49319/why-ifixits-repair-scores-are-different-than-the-french-repair-index.
34.
Bracquene
,
E.
,
Peeters
,
J. R.
,
Burez
,
J.
,
De Schepper
,
K.
,
Duflou
,
J. R.
, and
Dewulf
,
W.
,
2019
, “
Repairability Evaluation for Energy Related Products
,”
Proc. CIRP
,
80
, pp.
536
541
.
35.
Cordella
,
M.
,
Sanfelix
,
J.
, and
Alfieri
,
F.
,
2018
, “
Development of an Approach for Assessing the Reparability and Upgradability of Energy-Related Products
,”
Proc. CIRP
,
69
, pp.
888
892
.
36.
IFixit
. “
Smartphone Repairability Scores
,” https://www.ifixit.com/smartphone-repairability.
37.
Bracquené
,
E.
,
Peeters
,
J.
,
Alfieri
,
F.
,
Sanfélix
,
J.
,
Duflou
,
J.
,
Dewulf
,
W.
, and
Cordella
,
M.
,
2021
, “
Analysis of Evaluation Systems for Product Repairability: A Case Study for Washing Machines
,”
J. Clean. Prod.
,
281
, p.
125122
.
38.
Bracquené
,
E.
,
Brusselaers
,
J.
,
Dams
,
Y.
,
Peeters
,
J.
,
De Schepper
,
K.
,
Duflou
,
J.
, and
Dewulf
,
W.
,
2018
, “
Repairability Criteria for Energy Related Products Study in the BeNeLux Context to Evaluate the Options to Extend the Product Life Time Final Report
,”
Proc. CIRP
,
80
(
June
), pp.
536
541
.
39.
Cordella
,
M.
,
Alfieri
,
F.
, and
Sanfelix
,
J.
,
2019
,
Analysis and Development of a Scoring System for Repair and Upgrade of Products
,
Publications Office of the European Union
,
Luxembourg
.
40.
Mummolo
,
G.
,
Bari
,
P.
,
Menolascina
,
F.
,
Elettrotecnica
,
I.
,
Orabona
,
V.
,
Salento
,
U.
,
Siena
,
G. P.
,
Ospedale
,
I.
, and
Sollievo
,
C.
,
2007
, “
A Fuzzy Approach for Medical Equipment Replacement Planning
,”
Proceedings of the Third International Conference on Maintenance and Facility Management
,
Rome, Italy
,
Sept. 27–28
, pp.
229
235
.
41.
Basiony
,
M.
,
2013
, “
Computerized Equipment Management System
,”
J. Clin. Eng.
,
38
(
4
), pp.
178
184
.
42.
Taylor
,
K.
, and
Jackson
,
S.
,
2005
, “
A Medical Equipment Replacement Score System
,”
J. Clin. Eng.
,
30
(
1
), pp.
37
41
.
43.
Taghipour
,
S.
,
Banjevic
,
D.
, and
Jardine
,
A. K. S.
,
2011
, “
Prioritization of Medical Equipment for Maintenance Decisions
,”
J. Oper. Res. Soc.
,
62
(
9
), pp.
1666
1687
.
44.
Rajasekaran
,
D.
,
2005
, “
Development of an Automated Medical Equipment Replacement Planning System in Hospitals 3.1.4
,”
Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference
,
Hoboken, NJ
,
Apr. 2–3
, pp.
52
53
.
45.
Vanegas
,
P.
,
Peeters
,
J. R.
,
Cattrysse
,
D.
,
Duflou
,
J. R.
,
Tecchio
,
P.
,
Mathieux
,
F.
, and
Ardente
,
F.
,
2016
, “
Study for a Method to Assess the Ease of Disassembly of Electrical and Electronic Equipment, Method Development and Application to a Flat Panel Display Case Study
.”
46.
Peeters
,
J. R.
,
Tecchio
,
P.
,
Ardente
,
F.
,
Vanegas
,
P.
,
Coughlan
,
D.
, and
Duflou
,
J. R.
,
2018
,
EDIM: Further Development of the Method to Assess the Ease of Disassembly and Reassembly of Products—Application to Notebook Computers
.
47.
Liu
,
Z.
,
Mao
,
H.
,
Wu
,
C.-Y.
,
Feichtenhofer
,
C.
,
Darrell
,
T.
, and
Xie
,
S.
,
2022
, “
A ConvNet for the 2020s
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 18–24
, pp.
11976
11986
.
48.
Liu
,
Z.
,
Lin
,
Y.
,
Cao
,
Y.
,
Hu
,
H.
,
Wei
,
Y.
,
Zhang
,
Z.
,
Lin
,
S.
, and
Guo
,
B.
,
2021
, “
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Montreal, BC, Canada
,
Oct. 11–17
, pp.
10012
10022
.
49.
Zhang
,
Y.
,
Guo
,
W.
,
Wu
,
C.
,
Li
,
W.
, and
Tao
,
R.
,
2023
, “
FANet: An Arbitrary Direction Remote Sensing Object Detection Network Based on Feature Fusion and Angle Classification
,”
IEEE Trans. Geosci. Remote Sens.
,
61
, pp.
1
11
.
50.
Chen
,
S.
,
Ogawa
,
Y.
,
Zhao
,
C.
, and
Sekimoto
,
Y.
,
2023
, “
Large-Scale Individual Building Extraction From Open-Source Satellite Imagery Via Super-Resolution-Based Instance Segmentation Approach
,”
ISPRS J. Photogramm. Remote Sens.
,
195
, pp.
129
152
.
51.
Fan
,
J.
,
Zheng
,
P.
, and
Lee
,
C. K. M.
,
2022
, “
A Multi-granularity Scene Segmentation Network for Human-Robot Collaboration Environment Perception
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, IEEE, pp.
2105
2110
.
52.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper With Convolutions
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
1
9
.
53.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
54.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
3rd International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
55.
Bansal
,
M.
,
Kumar
,
M.
, and
Kumar
,
M.
,
2021
, “
2D Object Recognition: A Comparative Analysis of SIFT, SURF and ORB Feature Descriptors
,”
Multimed. Tools Appl.
,
80
(
12
), pp.
18839
18857
.
56.
Rublee
,
E.
,
Rabaud
,
V.
,
Konolige
,
K.
, and
Bradski
,
G.
,
2011
, “
ORB: An Efficient Alternative to SIFT or SURF
,”
2011 International Conference on Computer Vision
,
Barcelona, Spain
,
Nov. 6–13
, pp.
2564
2571
.
57.
Awaludin
,
M.
, and
Yasin
,
V.
,
2020
, “
Application of Oriented Fast and Rotated Brief (ORB) and Bruteforce Hamming in Library Opencv for Classification of Plants
,”
J. Inf. Syst. Appl. Manag. Account. Res.
,
4
(
3
), pp.
51
59
.
58.
Al-Tamimi
,
A.-K.
,
Qasaimeh
,
A.
, and
Qaddoum
,
K.
,
2021
, “
Offline Signature Recognition System Using Oriented FAST and Rotated BRIEF
,”
Int. J. Electr. Comput. Eng.
,
11
(
5
), p.
4095
.
59.
Sun
,
Y.
,
Du
,
G.
,
Lin
,
Q.
,
Zhong
,
L.
,
Zhao
,
Y.
,
Qiu
,
J.
, and
Cao
,
Y.
,
2022
, “
Individual Wood Board Tracing Method Using Oriented Fast and Rotated Brief Method in the Wood Traceability System
,”
Wood Sci. Technol.
,
56
(
3
), pp.
1
22
.
60.
Rosin
,
P. L.
,
1999
, “
Measuring Corner Properties
,”
Comput. Vis. Image Underst.
,
73
(
2
), pp.
291
307
.
61.
Lowe
,
D. G.
,
2004
, “
Distinctive Image Features from Scale-Invariant Keypoints
,”
Int. J. Comput. Vis.
,
60
(
2
), pp.
91
110
.
62.
Trivedi
,
V. K.
,
Shukla
,
P. K.
, and
Pandey
,
A.
,
2022
, “
Automatic Segmentation of Plant Leaves Disease Using Min-Max Hue Histogram and k-Mean Clustering
,”
Multimed. Tools Appl.
,
81
(
14
), pp.
1
28
.
63.
Govender
,
P.
, and
Sivakumar
,
V.
,
2020
, “
Application of k-Means and Hierarchical Clustering Techniques for Analysis of Air Pollution: A Review (1980–2019)
,”
Atmos. Pollut. Res.
,
11
(
1
), pp.
40
56
.
64.
IFixit
. “
Understanding ‘Provisional’ Repairability Scores
,” https://www.ifixit.com/Wiki/Provisional_Repairability_Scores.
65.
Shawon
,
A.
,
Faruk
,
M. O.
,
Habib
,
M. B.
, and
Khan
,
A. M.
,
2019
, “
Silicon Wafer Map Defect Classification Using Deep Convolutional Neural Network With Data Augmentation
,”
2019 IEEE 5th International Conference on Computer and Communications (ICCC)
,
Chengdu, China
,
Dec. 6–9
, IEEE, pp.
1995
1999
.
66.
Hatamian
,
F. N.
,
Ravikumar
,
N.
,
Vesal
,
S.
,
Kemeth
,
F. P.
,
Struck
,
M.
, and
Maier
,
A.
,
2020
, “
The Effect of Data Augmentation on Classification of Atrial Fibrillation in Short Single-Lead ECG Signals Using Deep Neural Networks
,”
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Barcelona, Spain
,
May 4–8
, IEEE, pp.
1264
1268
.
67.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Adv. Neural Inf. Process. Syst.
,
30
, pp.
1
11
.
68.
Tan
,
M.
, and
Le
,
Q.
,
2019
, “
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
,”
International Conference on Machine Learning
,
Long Beach, CA
,
June 10–15
, pp.
6105
6114
.
69.
Huang
,
G.
,
Liu
,
Z.
,
Van Der Maaten
,
L.
, and
Weinberger
,
K. Q.
,
2017
, “
Densely Connected Convolutional Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
4700
4708
.
70.
Gunning
,
D.
,
Stefik
,
M.
,
Choi
,
J.
,
Miller
,
T.
,
Stumpf
,
S.
, and
Yang
,
G.-Z.
,
2019
, “
XAI—Explainable Artificial Intelligence
,”
Sci. Rob.
,
4
(
37
), p.
eaay7120
.
71.
Radosavovic
,
I.
,
Kosaraju
,
R. P.
,
Girshick
,
R.
,
He
,
K.
, and
Dollár
,
P.
,
2020
, “
Designing Network Design Spaces
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
,
June 13–19
, pp.
10428
10436
.
You do not currently have access to this content.