Abstract

The emerging field of direct recycling for spent Li-ion batteries offers significant advantages, such as reduced energy expenses and minimized secondary pollution, when compared to traditional pyrometallurgical and hydrometallurgical methods. This is due to its direct utilization of the spent cathodes as raw materials. However, efficient harvesting of spent cathode particles remains a challenge. To address this issue, this technical brief is the first to incorporate resonant acoustic vibration technology (RAV) as an efficient method for stripping cathode powders from spent Li-ion batteries. Our findings indicate that RAV-based techniques can achieve a stripping efficiency of up to 92%. A comparative analysis with conventional stripping methods, such as magnetic stirring, sonication, and curling–uncurling, reveals that RAV coupled with heat treatment provides unparalleled scalability and efficiency, eliminating the need for post-processing. Furthermore, the resulting cathode powders retain their original polycrystalline particle structures, with no impurities, such as carbon black or small aluminum fragments detected. These findings highlight the promise of RAV technology for large-scale recovery of electrode powders and its potential role in direct recycling of spent Li-ion batteries.

References

1.
Chen
,
M.
,
Ma
,
X.
,
Chen
,
B.
,
Arsenault
,
R.
,
Karlson
,
P.
,
Simon
,
N.
, and
Wang
,
Y.
,
2019
, “
Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries
,”
Joule
,
3
(
11
), pp.
2622
2646
.
2.
Makuza
,
B.
,
Tian
,
Q.
,
Guo
,
X.
,
Chattopadhyay
,
K.
, and
Yu
,
D.
,
2021
, “
Pyrometallurgical Options for Recycling Spent Lithium-Ion Batteries: A Comprehensive Review
,”
J. Power Sources
,
491
, p.
229622
.
3.
Dang
,
H.
,
Wang
,
B.
,
Chang
,
Z.
,
Wu
,
X.
,
Feng
,
J.
,
Zhou
,
H.
,
Li
,
W.
, and
Sun
,
C.
,
2018
, “
Recycled Lithium From Simulated Pyrometallurgical Slag by Chlorination Roasting
,”
ACS Sustain. Chem. Eng.
,
6
(
10
), pp.
13160
13167
.
4.
Chan
,
K. H.
,
Anawati
,
J.
,
Malik
,
M.
, and
Azimi
,
G.
,
2021
, “
Closed-Loop Recycling of Lithium, Cobalt, Nickel, and Manganese From Waste Lithium-Ion Batteries of Electric Vehicles
,”
ACS Sustain. Chem. Eng.
,
9
(
12
), pp.
4398
4410
.
5.
Lv
,
W.
,
Wang
,
Z.
,
Cao
,
H.
,
Sun
,
Y.
,
Zhang
,
Y.
, and
Sun
,
Z.
,
2018
, “
A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries
,”
ACS Sustain. Chem. Eng.
,
6
(
2
), pp.
1504
1521
.
6.
Liu
,
C.
,
Lin
,
J.
,
Cao
,
H.
,
Zhang
,
Y.
, and
Sun
,
Z.
,
2019
, “
Recycling of Spent Lithium-Ion Batteries in View of Lithium Recovery: A Critical Review
,”
J. Clean. Prod.
,
228
, pp.
801
813 .
7.
Liang
,
Z.
,
Cai
,
C.
,
Peng
,
G.
,
Hu
,
J.
,
Hou
,
H.
,
Liu
,
B.
,
Liang
,
S.
,
Xiao
,
K.
,
Yuan
,
S.
, and
Yang
,
J.
,
2021
, “
Hydrometallurgical Recovery of Spent Lithium Ion Batteries: Environmental Strategies and Sustainability Evaluation
,”
ACS Sustain. Chem. Eng.
,
9
(
17
), pp.
5750
5767
.
8.
Lombardo
,
G.
,
Ebin
,
B.
,
Steenari
,
B. M.
,
Alemrajabi
,
M.
,
Karlsson
,
I.
, and
Petranikova
,
M.
,
2021
, “
Comparison of the Effects of Incineration, Vacuum Pyrolysis and Dynamic Pyrolysis on the Composition of NMC-Lithium Battery Cathode-Material Production Scraps and Separation of the Current Collector
,”
Resour. Conserv. Recycl.
,
164
, p.
105142
.
9.
Maroufi
,
S.
,
Assefi
,
M.
,
Khayyam Nekouei
,
R.
, and
Sahajwalla
,
V.
,
2020
, “
Recovery of Lithium and Cobalt From Waste Lithium-Ion Batteries Through a Selective Isolation-Suspension Approach,”
Sustain. Mater. Technol.
,
23
, p.
e00139
.
10.
Zhou
,
S.
,
Zhang
,
Y.
,
Meng
,
Q.
,
Dong
,
P.
,
Fei
,
Z.
, and
Li
,
Q.
,
2021
, “
Recycling of LiCoO2 Cathode Material From Spent Lithium Ion Batteries by Ultrasonic Enhanced Leaching and One-Step Regeneration
,”
J. Environ. Manage.
,
277
, p.
111426
.
11.
Hanisch
,
C.
,
Loellhoeffel
,
T.
,
Diekmann
,
J.
,
Markley
,
K. J.
,
Haselrieder
,
W.
, and
Kwade
,
A.
,
2015
, “
Recycling of Lithium-Ion Batteries: A Novel Method to Separate Coating and Foil of Electrodes
,”
J. Clean. Prod.
,
108
, pp.
301
311
.
12.
Shi
,
Y.
,
Zhang
,
M.
,
Meng
,
Y. S.
,
Chen
,
Z.
,
Shi
,
Y.
,
Zhang
,
M.
,
Meng
,
Y. S.
, and
Chen
,
Z.
,
2019
, “
Ambient-Pressure Relithiation of Degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via Eutectic Solutions for Direct Regeneration of Lithium-Ion Battery Cathodes
,”
Adv. Energy Mater.
,
9
(
20
), p.
1900454
.
13.
Sita
,
L. E.
,
da Silva
,
S. P.
,
da Silva
,
P. R. C.
, and
Scarminio
,
J.
,
2017
, “
Re-Synthesis of LiCoO2 Extracted From Spent Li-Ion Batteries With Low and High State of Health
,”
Mater. Chem. Phys.
,
194
, pp.
97
104
.
14.
Bai
,
Y.
,
Essehli
,
R.
,
Jafta
,
C. J.
,
Livingston
,
K. M.
, and
Belharouak
,
I.
,
2021
, “
Recovery of Cathode Materials and Aluminum Foil Using a Green Solvent
,”
ACS Sustain. Chem. Eng.
,
9
(
17
), pp.
6048
6055
.
15.
Qian
,
G.
,
Li
,
Z.
,
Wang
,
Y.
,
Xie
,
X.
,
He
,
Y.
,
Li
,
J.
,
Zhu
,
Y.
, et al
,
2022
, “
Value-Creating Upcycling of Retired Electric Vehicle Battery Cathodes
,”
Cell Rep. Phys. Sci.
,
3
(
2
), p.
100741
.
16.
Lin
,
J.
,
Fan
,
E.
,
Zhang
,
X.
,
Li
,
Z.
,
Dai
,
Y.
,
Chen
,
R.
,
Wu
,
F.
, and
Li
,
L.
,
2022
, “
Sustainable Upcycling of Spent Lithium-Ion Batteries Cathode Materials: Stabilization by In Situ Li/Mn Disorder
,”
Adv. Energy Mater.
,
12
(
26
), p.
220117
.
17.
Lei
,
C.
,
Aldous
,
I.
,
Hartley
,
J. M.
,
Thompson
,
D. L.
,
Scott
,
S.
,
Hanson
,
R.
,
Anderson
,
P. A.
, et al
,
2021
, “
Lithium Ion Battery Recycling Using High-Intensity Ultrasonication
,”
Green Chem.
,
23
(
13
), pp.
4710
4715
.
18.
Xiao
,
Y.
,
Su
,
J.
, and
Chen
,
L.
,
2023
, “
A Comparative Analysis of Cathode Stripping Methods for Direct Recycling of Spent Li-Ion Batteries
,”
International Manufacturing Science and Engineering Conference
,
New Brunswick, NJ
,
June 12–16
,
American Society of Mechanical Engineers
, p.
V002T06A036
.
19.
Gupta
,
S.
,
Pu
,
Y. E.
,
Li
,
M.
,
Li
,
Z.
, and
Osorio
,
J. G.
,
2022
, “
Assessment of Resonant Acoustic Mixing for Low-Dose Pharmaceutical Powder Blends
,”
AAPS PharmSciTech.
,
23
(
5
), p.
126
.
20.
Andrews
,
M. R.
,
Collet
,
C.
,
Wolff
,
A.
, and
Hollands
,
C.
,
2020
, “
Resonant Acoustic® Mixing: Processing and Safety
,”
Propellants Explos. Pyrotech.
,
45
(
1
), pp.
77
86
.
21.
Haram
,
M. H. S. M.
,
Lee
,
J. W.
,
Ramasamy
,
G.
,
Ngu
,
E. E.
,
Thiagarajah
,
S. P.
, and
Lee
,
Y. H.
,
2021
, “
Feasibility of Utilising Second Life EV Batteries: Applications, Lifespan, Economics, Environmental Impact, Assessment, and Challenges
,”
Alexandria Eng. J.
,
60
(
5
), pp.
4517
4536
.
22.
Wu
,
L.
,
Zhang
,
F. S.
,
He
,
K.
,
Zhang
,
Z. Y.
, and
Zhang
,
C. C.
,
2022
, “
Avoiding Thermal Runaway During Spent Lithium-Ion Battery Recycling: A Comprehensive Assessment and a New Approach for Battery Discharge
,”
J. Clean. Prod.
,
380
, p.
135045
.
23.
Lu
,
Y.
,
2020
, “
Green Manufacturing and Direct Recycling of Lithium-Ion Batteries
,”
Doctoral Dissertation
,
Virginia Tech
., Blacksburg, VA.
24.
Xu
,
Z.
,
Rahman
,
M. M.
,
Mu
,
L.
,
Liu
,
Y.
, and
Lin
,
F.
,
2018
, “
Chemomechanical Behaviors of Layered Cathode Materials in Alkali Metal Ion Batteries
,”
J. Mater. Chem. A.
,
6
(
44
), pp.
21859
21884
.
25.
Ryu
,
H. H.
,
Lee
,
S. B.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2022
, “
Morphology-Dependent Battery Performance of Ni-Rich Layered Cathodes: Single-Crystal Versus Refined Polycrystal
,”
ACS Energy Lett.
,
7
(
9
), pp.
3072
3079
.
26.
Yoshinaga
,
N.
,
Kumakura
,
S.
,
Kubota
,
K.
,
Horiba
,
T.
, and
Komaba
,
S.
,
2019
, “
Lithium Magnesium Tungstate Solid as an Additive Into Li(Ni 1/3 Mn 1/3 Co 1/3)O 2 Electrodes for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
3
), p.
A5430
.
27.
Teichert
,
P.
,
Eshetu
,
G. G.
,
Jahnke
,
H.
, and
Figgemeier
,
E.
,
2020
, “
Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries
,”
Batteries.
,
6
(
1
), p.
8
.
You do not currently have access to this content.