Abstract

High-temperature microfluidic devices (such as gas chromatography microcolumns) have traditionally been fabricated using photolithography, etching, and wafer bonding which allow for precise microscale features but lack the ability to form complex 3D designs. Metal additive manufacturing could enable higher complexity microfluidic designs if reliable methods for fabrication are developed, but forming small negative features is challenging—especially in powder-based processes. In this paper, the formation of sealed metal microchannels was demonstrated using stainless-steel binder jetting with bronze infiltration. To create small negative features, bronze infiltrant must fill the porous part produced by binder jetting without filling the negative features. This was achieved through sacrificial powder infiltration (SPI), wherein sacrificial powder reservoirs (pore size ∼60 µm) are used to control infiltrant pressure. With this pressure control, the infiltrant selectively filled the small pores between particles in the printed part (pore size ∼3 µm) while leaving printed microchannels (700 µm and 930 µm) empty. To develop the SPI method, a pore filling study was performed in this stainless-steel/bronze system with 370 µm, 650 µm, and 930 µm microchannel segments. This study enabled SPI process design on these length scales by determining variations in pore filling across a sample and preferential filling between different sized pores.

References

1.
Goh
,
G. L.
,
Zhang
,
H.
,
Chong
,
T. H.
, and
Yeong
,
W. Y.
,
2021
, “
3D Printing of Multilayered and Multimaterial Electronics: A Review
,”
Adv. Electron. Mater.
,
7
(
10
), p.
2100445
.
2.
Li
,
J.
, and
Pumera
,
M.
,
2021
, “
3D Printing of Functional Microrobots
,”
Chem. Soc. Rev.
,
50
(
4
), pp.
2794
2838
.
3.
Sirringhaus
,
H.
,
Kawase
T.
,
Friend
R. H.
,
Shimoda
T.
,
Inbasekaran
M.
,
Wu
W.
, and
Woo
E. P.
,
2000
, “
High-Resolution Inkjet Printing of All-Polymer Transistor Circuits
,”
Science
,
290
(
5499
), pp.
2123
2126
.
4.
Zhu
,
W.
,
Li
J.
,
Leong
Y. J.
,
Rozen
I.
,
Qu
X.
,
Dong
R.
,
Wu
Z.
,
Gao
W.
,
Chung
P. H.
,
Wang
J.
, and
Chen
S.
,
2015
, “
3D-Printed Artificial Microfish
,”
Adv. Mater.
,
27
(
30
), pp.
4411
4417
.
5.
Nielsen
,
A. V.
,
Beauchamp
,
M. J.
,
Nordin
,
G. P.
, and
Woolley
,
A. T.
,
2020
3D Printed Microfluidics
,”
Annu. Rev. Anal. Chem.
13
(
1)
, p.
45
65
.
6.
Rogers
,
C. I.
,
Qaderi
,
K.
,
Woolley
,
A. T.
, and
Nordin
,
G. P.
,
2015
, “
3D Printed Microfluidic Devices With Integrated Valves
,”
Biomicrofluidics
,
9
(
1
), p.
016501
.
7.
Dahmen
,
T.
,
Klingaa
,
C. G.
,
Baier-Stegmaier
,
S.
,
Lapina
,
A.
,
Pedersen
,
D. B.
, and
Hattel
,
J. H.
,
2020
, “
Characterization of Channels Made by Laser Powder Bed Fusion and Binder Jetting Using X-Ray CT and Image Analysis
,”
Addit. Manuf.
,
36
, p.
101445
.
8.
Ghosh
,
A.
,
Vilorio
,
C. R.
,
Hawkins
,
A. R.
, and
Lee
,
M. L.
,
2018
, “
Microchip Gas Chromatography Columns, Interfacing and Performance
,”
Talanta
,
188
, pp.
463
492
.
9.
Gupta
,
V.
,
Talebi
,
M.
,
Deverell
,
J.
,
Sandron
,
S.
,
Nesterenko
,
P. N.
,
Heery
,
B.
,
Thompson
,
F.
,
Beirne
,
S.
,
Wallace
,
G. G.
, and
Paull
,
B.
,
2016
, “
3D Printed Titanium Micro-Bore Columns Containing Polymer Monoliths for Reversed-Phase Liquid Chromatography
,”
Anal. Chim. Acta
,
910
, pp.
84
94
.
10.
Phyo
,
S.
,
Choi
,
S.
,
Jang
,
J.
,
Choi
,
S.
, and
Lee
,
J.
,
2020
, “
A 3D-Printed Metal Column for Micro Gas Chromatography
,”
Lab. Chip
,
20
(
18
), pp.
3435
3444
.
11.
Hunter
,
L. W.
,
Brackett
,
D.
,
Brierley
,
N.
,
Yang
,
J.
, and
Attallah
,
M. M.
,
2020
, “
Assessment of Trapped Powder Removal and Inspection Strategies for Powder Bed Fusion Techniques
,”
Int. J. Adv. Manuf. Technol.
,
106
(
9–10
), pp.
4521
4532
.
12.
Sachs
,
E.
,
Cima
,
M.
, and
Cornie
,
J.
,
1990
, “
Three-Dimensional Printing: Rapid Tooling and Prototypes Directly From a CAD Model
,”
CIRP Ann.
,
39
(
1)
, pp.
201
204
. .
13.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
(
June
), pp.
781
801
.
14.
Sachs
,
E.
,
Wylonis
,
E.
,
Allen
,
S.
,
Cima
,
M.
, and
Guo
,
H.
,
2000
, “
Production of Injection Molding Tooling With Conformal Cooling Channels Using the Three Dimensional Printing Process
,”
Polym. Eng. Sci.
,
40
(
5
), pp.
1232
1247
.
15.
Fanchi
,
J. R.
,
2002
, “Measures of Rock-Fluid Interactions,”
Shared Earth Modeling
,
Elsevier
, pp.
108
132
.
16.
Dodds
,
J. A.
, and
Srivastava
,
P.
,
2006
, “
Capillary Pressure Curves of Sphere Packings: Correlation of Experimental Results and Comparison With Predictions From a Network Model of Pore Space
,”
Part. Part. Syst. Charact.
,
23
(
1
), pp.
29
39
.
17.
Ayaz
,
M.
,
Toussaint
,
R.
,
Schäfer
,
G.
, and
Måløy
,
K. J.
,
2020
, “
Gravitational and Finite-Size Effects on Pressure Saturation Curves During Drainage
,”
Water Resour. Res.
,
56
(
10
), p.
e2019WR026279
.
18.
Watanabe
,
S.
, and
Saito
,
T.
,
1972
, “
Densities of Binary Copper Based Alloys in Liquid State
,”
Trans. Jpn. Inst. Met.
,
13
(
3
), pp.
186
191
.
19.
Lee
,
J.
,
Shimoda
,
W.
, and
Tanaka
,
T.
,
2004
, “
Surface Tension and Its Temperature Coefficient of Liquid Sn-X (X = Ag, Cu) Alloys
,”
Mater. Trans.
,
45
(
9
), pp.
2864
2870
.
20.
Schweizer
,
B.
,
2017
, “
Hysteresis in Porous Media: Modelling and Analysis
,”
Interfaces Free Boundaries
,
19
(
3
), pp.
417
447
.
21.
Huang
,
N.
,
Cook
,
O. J.
,
Warner
,
J. D.
,
Smithson
,
R. L.W.
,
Kube
,
C. M.
,
Argüelles
,
A. P.
, and
Beese
,
A. M.
,
2022
, “
Effects of Infiltration Conditions on Binder Jet Additively Manufactured Stainless Steel Infiltrated With Bronze
,”
Addit. Manuf.
,
59
, p.
103162
.
You do not currently have access to this content.