Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Currently, numerous studies have applied gear skiving processes to produce face gear. However, there remains a significant challenge in achieving a flexible computing model for manufacturing a precise tooth surface for face gear. This study proposes a novel mathematical model that combines the cutter modification method and computer numerical control (CNC)-axis motion modification methods within a unified “closed-loop optimization.” This approach aims to enhance the tooth surface accuracy of skived helical face gears by determining optimal coefficients. Applying the Levenberg–Marquardt algorithm and sensitivity matrix enables the calculation of new polynomial coefficients, ensuring the attainment of gear surfaces with an accuracy grade of B6 (according to the ANSI/AGMA 2009-B01 standard) for each target surface. The proposed methodology involves the generation of a helical skiving cutter using a corrected rack. Subsequently, the cutting path on the CNC machine is optimized by incorporating additional motions expressed in polynomials. A comprehensive skiving simulation is conducted to achieve the desired face-gear surface, which is corrected by specified polynomial coefficients. The proposed model is validated through numerical and machining simulations using vericut software. The results affirm the practicality and efficacy of our approach in achieving the desired accuracy in producing helical face gears through power skiving processes.

References

1.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge, UK
.
2.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Zanzi
,
C.
,
Pontiggia
,
M.
, and
Handschuh
,
R. F.
,
2002
, “
Face-Gear Drive With Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
25–26
), pp.
2785
2813
.
3.
Litvin
,
F. L.
,
Gonzalez-Perez
,
I.
,
Fuentes
,
A.
,
Vecchiato
,
D.
,
Hansen
,
B. D.
, and
Binney
,
D.
,
2005
, “
Design, Generation and Stress Analysis of Face-Gear Drive With Helical Pinion
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
36–38
), pp.
3870
3901
.
4.
Zschippang
,
H. A.
,
Weikert
,
S.
,
Küçük
,
K. A.
, and
Wegener
,
K.
,
2019
, “
Face-Gear Drive: Geometry Generation and Tooth Contact Analysis
,”
Mech. Mach. Theory
,
142
, p.
103576
.
5.
Chu
,
X.
,
Wang
,
Y.
,
Du
,
S.
,
Huang
,
Y.
,
Su
,
G.
,
Liu
,
D.
, and
Zang
,
L.
,
2020
, “
An Efficient Generation Grinding Method for Spur Face Gear Along Contact Trace Using Disk CBN Wheel
,”
Int. J. Adv. Manuf. Technol.
,
110
(
5–6
), pp.
1179
1187
.
6.
Wang
,
Y.-Z.
,
Lan
,
Z.
,
Hou
,
L.-W.
,
Zhao
,
H.-P.
, and
Zhong
,
Y.
,
2016
, “
A Generating Milling Method for a Spur Face Gear Using a Five-Axis Computer Numerical Control Milling Machine
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
230
(
8
), pp.
1440
1450
.
7.
Yang
,
X-Y
, and
Tang
,
J-Y
,
2014
, “
Research on Manufacturing Method of CNC Plunge Milling for Spur Face-Gear
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3013
3019
.
8.
Hochrein
,
J.-F.
,
Trübswetter
,
M.
,
Otto
,
M.
, and
Stahl
,
K.
,
2022
, “
Direct Flank Geometry Calculation for Face Gears
,”
Forsch. Ingenieurwes.
,
86
(
3
), pp.
617
625
.
9.
Wang
,
Y.
,
Hou
,
L.
,
Lan
,
Z.
,
Wu
,
C.
,
Lv
,
Q.
, and
Zhao
,
X.
,
2017
, “
A Precision Generating Hobbing Method for Face-Gear Based on Worm Hob
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
231
(
6
), pp.
1057
1071
.
10.
Guo
,
E.
,
Hong
,
R.
,
Huang
,
X.
, and
Fang
,
C.
,
2015
, “
A Correction Method for Power Skiving of Cylindrical Gears Lead Modification
,”
J. Mech. Sci. Technol.
,
29
(
10
), pp.
4379
4386
.
11.
Shih
,
Y.-P.
, and
Li
,
Y.-J.
,
2018
, “
A Novel Method for Producing a Conical Skiving Tool With Error-Free Flank Faces for Internal Gear Manufacture
,”
ASME J. Mech. Des.
,
140
(
4
), p.
043302
.
12.
Luu
,
T.-T.
, and
Wu
,
Y.-R.
,
2022
, “
A Novel Correction Method to Attain Even Grinding Allowance in CNC Gear Skiving Process
,”
Mech. Mach. Theory
,
171
, p.
104771
.
13.
Tsai
,
C.-Y.
,
2021
, “
Power-Skiving Tool Design Method for Interference-Free Involute Internal Gear Cutting
,”
Mech. Mach. Theory
,
164
, p.
104396
.
14.
Luu
,
T.-T.
, and
Wu
,
Y.-R.
,
2022
, “
A Novel Approach to Attain Tooth Flanks With Variable Pressure and Helical Angles Utilizing the Same Cutter in the CNC Gear Skiving Process
,”
Int. J. Adv. Manuf. Technol.
,
123
(
3–4
), pp.
875
902
.
15.
Mo
,
S.
,
Wang
,
S.
,
Luo
,
B.
,
Bao
,
H.
,
Cen
,
G.
, and
Huang
,
Y.
,
2022
, “
Research on the Skiving Technology of Face Gear
,”
Int. J. Adv. Manuf. Technol.
,
121
(
7–8
), pp.
5181
5196
.
16.
Han
,
Z.
,
Jiang
,
C.
, and
Deng
,
X.
,
2022
, “
Machining and Meshing Analysis of Face Gears by Power Skiving
,”
J. Adv. Mech. Des. Syst. Manuf.
,
16
(
1
), pp.
JAMDSM0002
JAMDSM0002
.
17.
Xu
,
M.
,
Han
,
X.
,
Zheng
,
F.
,
Hua
,
L.
, and
Zeng
,
Y.
,
2024
, “
Design and Manufacture Method of Aviation Face Gear With High Load-Bearing Based on Gear Skiving Process
,”
ASME J. Manuf. Sci. Eng.
,
146
(
3
), p.
031009
.
18.
Guo
,
H.
,
Ma
,
T.
,
Zhang
,
S.
,
Zhao
,
N.
, and
Fuentes-Aznar
,
A.
,
2022
, “
Computerized Generation and Surface Deviation Correction of Face Gear Drives Generated by Skiving
,”
Mech. Mach. Theory
,
173
, p.
104839
.
19.
Mo
,
S.
,
Wang
,
S.
,
Luo
,
B.
,
Liu
,
Z.
,
Cen
,
G.
, and
Huang
,
Y.
,
2023
, “
Machining Principle and Cutter Design of Face Gear Skiving
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
237
(
3
), pp.
468
480
.
20.
American Gear Manufacturers Association
, “Bevel Gear Classification, Tolerances, and Measuring Methods,” ANSI/AGMA 2009-B01.
21.
Tran
,
V.-Q.
, and
Wu
,
Y.-R.
,
2020
, “
A Novel Method for Closed-Loop Topology Modification of Helical Gears Using Internal-Meshing Gear Honing
,”
Mech. Mach. Theory
,
145
, p.
103691
.
22.
Moré
,
J. J.
,
1978
, “The Levenberg–Marquardt Algorithm: Implementation and Theory,”
Numerical Analysis
,
G. A.
Watson
, ed.,
Springer
,
Berlin
, pp.
105
116
.
23.
Burney
,
S. M. A.
,
Jilani
,
T. A.
, and
Ardil
,
C.
,
2007
, “
Levenberg–Marquardt Algorithm For Karachi Stock Exchange Share Rates Forecasting
,”
World Academy of Science, Engineering and Technology
,
3
.
24.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2013
,
Matrix Computations
,
The Johns Hopkins University Press
,
Baltimore, MD
.
25.
Wang
,
Y.
,
Dong
,
J. C.
,
Wang
,
T. Y.
, and
Zhao
,
L.
,
2011
, “
NC Machining Simulation of Spiral Bevel Gear Based on VERICUT
,”
Appl. Mech. Mater.
,
141
, pp.
376
380
.
You do not currently have access to this content.