Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper explores the production of an oxide dispersion strengthened (ODS) 304L stainless steel microchannel heat exchanger (HX) using a hybrid additive manufacturing process of laser powder bed fusion and inkjet printing. The study investigates the capabilities and economics of the hybrid inkjet-laser powder bed fusion (LPBF) process and evaluates the dimensional accuracy, functionality, and mechanical properties of the resulting ODS alloy. The effectiveness and pressure drop of the ODS heat exchangers produced by the hybrid LPBF tool are also determined. Results show that the inkjet-doped samples have a lower mean channel height with higher standard deviation than samples produced by LPBF alone. This is attributed to greater absorption of laser energy for the powder coated with the oxide precursor. The economic analysis shows that the hybrid process has a potential for reducing the unit cost of the heat exchanger based on cost modeling assumptions.

References

1.
Dincer
,
I.
, and
Acar
,
C.
,
2015
, “
Review and Evaluation of Hydrogen Production Methods for Better Sustainability
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
11094
11111
.
2.
Zheng
,
R.
,
Diver
,
R.
,
Caldwell
,
D.
,
Fritz
,
B.
,
Cameron
,
R.
,
Humble
,
P.
,
TeGrotenhuis
,
W.
,
Dagle
,
R.
, and
Wegeng
,
R.
,
2015
, “
Integrated Solar Thermochemical Reaction System for Steam Methane Reforming
,”
Energy Procedia
,
69
, pp.
1192
1200
.
3.
Brannon
,
S. T.
, and
Paul
,
B. K.
,
2015
, “
The Development of Drawn Microchannel Flow Inserts for High Temperature Waste Heat Recuperators
,”
International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers
, p.
V001T002A076
.
4.
Paul
,
B. K.
,
2006
, “Micro Energy and Chemical Systems (MECS) and Multiscale Fabrication,”
Micromanufacturing and Nanotechnology
,
N. P.
Mahalik
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
299
355
.
5.
Kelly
,
J.
,
2019
, “
Low-Cost Recuperative Heat Exchanger for Supercritical Carbon Dioxide Power Systems, Final Scientific/Technical Report
,”
Altex Technologies Corporation
.
6.
Hirata
,
A.
,
Fujita
,
T.
,
Wen
,
Y.
,
Schneibel
,
J.
,
Liu
,
C. T.
, and
Chen
,
M.
,
2011
, “
Atomic Structure of Nanoclusters in Oxide-Dispersion-Strengthened Steels
,”
Nat. Mater.
,
10
(
12
), pp.
922
926
.
7.
Alamo
,
A.
,
Regle
,
H.
,
Pons
,
G.
, and
Béchade
,
J. L.
,
1992
, “
Microstructure and Textures of ODS Ferritic Alloys Obtained by Mechanical Alloying
,”
Mater. Sci. Forum
,
88–90
, pp.
183
190
.
8.
Odette
,
G. R.
,
Cunningham
,
N. J.
,
Stan
,
T.
,
Alam
,
M. E.
, and
De Carlan
,
Y.
,
2019
, “Nano-Oxide Dispersion-Strengthened Steels,”
Structural Alloys for Nuclear Energy Applications
,
G. R.
Odette
and
S. J.
Zinkle
, eds.,
Elsevier
,
New York
, pp.
529
583
.
9.
Zhang
,
C.
, and
Gümmer
,
V.
,
2019
, “
High Temperature Heat Exchangers for Recuperated Rotorcraft Powerplants
,”
Appl. Therm. Eng.
,
154
, pp.
548
561
.
10.
Maier
,
B.
,
Lenling
,
M.
,
Yeom
,
H.
,
Johnson
,
G.
,
Maloy
,
S.
, and
Sridharan
,
K.
,
2019
, “
A Novel Approach for Manufacturing Oxide Dispersion Strengthened (ODS) Steel Cladding Tubes Using Cold Spray Technology
,”
Nucl. Eng. Technol.
,
51
(
4
), pp.
1069
1074
.
11.
Yang
,
S.
,
2023
, “
Additive Manufacturing of Austenitic Oxide Dispersion Strengthened Alloy Using Powder Feedstock Gas-Atomized With Elemental Yttrium Via Laser Directed Energy Deposition
,”
Masters thesis
,
Oregon State University
,
Corvallis, OR
.
12.
Wilms
,
M. B.
,
Pirch
,
N.
, and
Gökce
,
B.
,
2023
, “
Manufacturing Oxide-Dispersion-Strengthened Steels Using the Advanced Directed Energy Deposition Process of High-Speed Laser Cladding
,”
Prog. Addit. Manuf.
,
8
(
2
), pp.
159
167
.
13.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2014
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
14.
Zhao
,
C.
,
Fezzaa
,
K.
,
Cunningham
,
R. W.
,
Wen
,
H.
,
De Carlo
,
F.
,
Chen
,
L.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2017
, “
Real-Time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-ray Imaging and Diffraction
,”
Sci. Rep.
,
7
(
1
), p.
3602
.
15.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), p.
044005
.
16.
Paul
,
B. K.
,
O'Connor
,
J. T.
, and
Haapala
,
K. R.
,
2021
, “
Managing Business Risk in Modular Chemical Process Intensification
,”
Chem. Eng. Prog.
,
117
(
3
), pp.
22
27
.
17.
Kenel
,
C.
,
Dawson
,
K.
,
Barras
,
J.
,
Hauser
,
C.
,
Dasargyri
,
G.
,
Bauer
,
T.
,
Colella
,
A.
, et al
,
2017
, “
Microstructure and Oxide Particle Stability in a Novel ODS γ-TiAl Alloy Processed by Spark Plasma Sintering and Laser Additive Manufacturing
,”
Intermetallics
,
90
, pp.
63
73
.
18.
Bourell
,
D.
,
Kruth
,
J. P.
,
Leu
,
M.
,
Levy
,
G.
,
Rosen
,
D.
,
Beese
,
A. M.
, and
Clare
,
A.
,
2017
, “
Materials for Additive Manufacturing
,”
CIRP Ann.
,
66
(
2
), pp.
659
681
.
19.
Ghayoor
,
M.
,
Lee
,
K.
,
He
,
Y.
,
Chang
,
C.-H.
,
Paul
,
B. K.
, and
Pasebani
,
S.
,
2020
, “
Selective Laser Melting of Austenitic Oxide Dispersion Strengthened Steel: Processing, Microstructural Evolution and Strengthening Mechanisms
,”
Mater. Sci. Eng. A
,
788
, p.
139532
.
20.
Ghayoor
,
M.
,
Mirzababaei
,
S.
,
Sittiho
,
A.
,
Charit
,
I.
,
Paul
,
B. K.
, and
Pasebani
,
S.
,
2021
, “
Thermal Stability of Additively Manufactured Austenitic 304L ODS Alloy
,”
J. Mater. Sci. Technol.
,
83
, pp.
208
218
.
21.
Horn
,
T.
,
Rock
,
C.
,
Kaoumi
,
D.
,
Anderson
,
I.
,
White
,
E.
,
Prost
,
T.
,
Rieken
,
J.
,
Saptarshi
,
S.
,
Schoell
,
R.
, and
DeJong
,
M.
,
2022
, “
Laser Powder Bed Fusion Additive Manufacturing of Oxide Dispersion Strengthened Steel Using Gas Atomized Reaction Synthesis Powder
,”
Mater. Des.
,
216
, p.
110574
.
22.
Paul
,
B. K.
,
Lee
,
K.
,
He
,
Y.
,
Ghayoor
,
M.
,
Chang
,
C.-H.
, and
Pasebani
,
S.
,
2020
, “
Oxide Dispersion Strengthened 304 L Stainless Steel Produced by Ink Jetting and Laser Powder Bed Fusion
,”
CIRP Ann.
,
69
(
1
), pp.
193
196
.
23.
Pasebani
,
S.
,
Baghbani
,
S. M. G.
,
Paul
,
B. K.
,
Chang
,
C.-H.
,
Lee
,
K.
, and
Yujuan
,
H.
,
2021
, “
Additive-Containing Alloy Embodiments and Methods of Making and Using the Same
,” Google Patents.
24.
Ghayoor
,
M.
,
Sadeghi
,
O.
,
Cox
,
B.
,
Gess
,
J.
, and
Pasebani
,
S.
,
2023
, “
On the Melt Pool Dynamic of Voxel-Controlled Metal Matrix Composites Via Hybrid Additive Manufacturing: Laser Powder Bed Fusion and Ink-Jetting
,”
J. Manuf. Process.
,
89
, pp.
314
327
.
25.
Lee
,
K.
,
Doddapaneni
,
V. V. K.
,
Mirzababaei
,
S.
,
Pasebani
,
S.
,
Chang
,
C.-H.
, and
Paul
,
B. K.
,
2022
, “
Synthesis of a 316L Stainless Steel–Copper Composite by Laser Melting
,”
Addit. Manuf. Lett.
,
3
, p.
100058
.
26.
Mirzababaei
,
S.
,
Doddapaneni
,
V. V. K.
,
Lee
,
K.
,
Paul
,
G. E.
,
Pirgazi
,
H.
,
Tan
,
K.-S.
,
Ertorer
,
O.
,
Chang
,
C.-H.
,
Paul
,
B. K.
, and
Pasebani
,
S.
,
2023
, “
Remarkable Enhancement in Thermal Conductivity of Stainless-Steel Leveraging Metal Composite Laser Powder Bed Fusion: 316L-Cu Composite
,”
Addit. Manuf.
,
70
, p.
103576
.
27.
Melnikov
,
P.
,
Nascimento
,
V.
,
Consolo
,
L.
, and
Silva
,
A.
,
2013
, “
Mechanism of Thermal Decomposition of Yttrium Nitrate Hexahydrate, Y (NO3)3·6H2O and Modeling of Intermediate Oxynitrates
,”
J. Therm. Anal. Calorim.
,
111
(
1
), pp.
115
119
.
28.
Iron
,
A.
,
1979
,
High-Temperature Characteristics of Stainless Steels, Committee of Stainless Steel Producers
,
Toronto, Ontario, Canada
.
29.
Xu
,
Y.
,
Zhou
,
Z.
,
Li
,
M.
, and
He
,
P.
,
2011
, “
Fabrication and Characterization of ODS Austenitic Steels
,”
J. Nucl. Mater.
,
417
(
1–3
), pp.
283
285
.
30.
Wang
,
M.
,
Zhou
,
Z.
,
Sun
,
H.
,
Hu
,
H.
, and
Li
,
S.
,
2013
, “
Microstructural Observation and Tensile Properties of ODS-304 Austenitic Steel
,”
Mater. Sci. Eng. A
,
559
, pp.
287
292
.
31.
Shi
,
Y.
,
Lu
,
Z.
,
Xu
,
H.
,
Xie
,
R.
,
Ren
,
Y.
, and
Yang
,
G.
,
2019
, “
Microstructure Characterization and Mechanical Properties of Laser Additive Manufactured Oxide Dispersion Strengthened Fe-9Cr Alloy
,”
J. Alloys Compd.
,
791
, pp.
121
133
.
32.
Lee
,
J.
,
Terner
,
M.
,
Jun
,
S.
,
Hong
,
H.-U.
,
Copin
,
E.
, and
Lours
,
P.
,
2020
, “
Heat Treatments Design for Superior High-Temperature Tensile Properties of Alloy 625 Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
790
, p.
139720
.
33.
Kim
,
K.-S.
,
Kang
,
T.-H.
,
Kassner
,
M. E.
,
Son
,
K.-T.
, and
Lee
,
K.-A.
,
2020
, “
High-Temperature Tensile and High Cycle Fatigue Properties of Inconel 625 Alloy Manufactured by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
35
, p.
101377
.
34.
Ma
,
S.
, and
Wang
,
X.
,
2019
, “
Mechanical Properties and Fracture of In-Situ Al3Ti Particulate Reinforced A356 Composites
,”
Mater. Sci. Eng. A
,
754
, pp.
46
56
.
35.
Sun
,
Y.
,
Zhao
,
Y.
,
Wu
,
J.
,
Kai
,
X.
,
Zhang
,
Z.
,
Fang
,
Z.
, and
Xia
,
C.
,
2020
, “
Effects of Particulate Agglomerated Degree on Deformation Behaviors and Mechanical Properties of In-Situ ZrB2 Nanoparticles Reinforced AA6016 Matrix Composites by Finite Element Modeling
,”
Mater. Res. Express
,
7
(
3
), p.
036507
.
36.
Mala
,
G. M.
, and
Li
,
D.
,
1999
, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
142
148
.
37.
Brkić
,
D.
, and
Praks
,
P.
,
2018
, “
Unified Friction Formulation From Laminar to Fully Rough Turbulent Flow
,”
Appl. Sci.
,
8
(
11
), p.
2036
.
38.
Perachon
,
G.
,
Thourey
,
J.
, and
Mathurin
,
D.
,
1977
, “
Formation Enthalpies of Hexahydrated Yttrium Nitrate and the Y 3+-ion
,”
Thermochim. Acta
,
18
(
2
), pp.
229
234
.
39.
Robie
,
R. A.
, and
Hemingway
,
B. S.
,
1995
,
Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures
,
US Government Printing Office
,
Washington, DC
.
40.
Chase
,
M. W.
Jr
,
1998
, “
NIST-JANAF Thermochemical Tables
,”
J. Phys. Chem. Ref. Data
,
9
.
41.
Gao
,
Q.
,
Lizarazo-Adarme
,
J.
,
Paul
,
B. K.
, and
Haapala
,
K. R.
,
2016
, “
An Economic and Environmental Assessment Model for Microchannel Device Manufacturing: Part 1–Methodology
,”
J. Cleaner Prod.
,
120
, pp.
135
145
.
42.
Paul
,
B. K.
,
McNeff
,
P.
,
Brannon
,
S.
, and
O’Halloran
,
M.
,
2019
, “The Role of Manufacturing Process Design in Technology Commercialization,”
Emerging Frontiers in Industrial and Systems Engineering: Success Through Collaboration
,
Taylor & Francis Group
, pp.
259
288
.
43.
Yim
,
S.
, and
Rosen
,
D.
,
2013
, “
Build Time and Cost Models for Additive Manufacturing Process Selection
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
,
American Society of Mechanical Engineers Digital Collection
, pp.
375
382
.
44.
Moylan
,
S. P.
,
Slotwinski
,
J. A.
,
Cooke
,
A.
,
Jurrens
,
K.
, and
Donmez
,
M. A.
,
2013
, “
Lessons Learned in Establishing the NIST Metal Additive Manufacturing Laboratory
,” NIST Technical Note.
45.
Pham
,
D. T.
, and
Wang
,
X.
,
2000
, “
Prediction and Reduction of Build Times for the Selective Laser Sintering Process
,”
Proc. Inst. Mech. Eng., Part B
,
214
(
6
), pp.
425
430
.
46.
Manoharan
,
S.
,
Lee
,
K.
,
Freiberg
,
L.
,
Coblyn
,
M.
,
Jovanovic
,
G.
, and
Paul
,
B. K.
,
2019
, “
Comparing the Economics of Metal Additive Manufacturing Processes for Micro-Scale Plate Reactors in the Chemical Process Industry
,”
Procedia Manuf.
,
34
, pp.
603
612
.
47.
Shah
,
R. K.
, and
London
,
A. L.
,
2014
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
Cambridge, MA
.
48.
Dzarma
,
G.
,
Adeyemi
,
A.
, and
Taj-Liad
,
A.
,
2020
, “
Effect of Inner Surface Roughness on Pressure Drop in a Small Diameter Pipe
,”
Int. J. Novel Res. Eng. Pharm. Sci.
,
7
(
1
), pp.
1
8
.
You do not currently have access to this content.