Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The goal of this research is to create a machine learning model that can predict the thermally induced axial displacement of machine tool spindles. To achieve this goal, this study applied the Light Gradient Boosting Machine (LightGBM) learning framework to predict the thermally induced axial displacement of mechanical equipment by a heat source in a model that had an outer structure similar to that of a machine spindle. In the predictions using LightGBM, the time, temperature, and heat flux of equipment surfaces are measured and used to predict displacement. A similar trial study was conducted for a servomotor. A series of experiments clarified that the thermally induced axial displacement of the equipment can be predicted using a machine learning model created from the measured temperatures and heat fluxes of the target component and other parameters. Furthermore, the study focused on the feature importance in the prediction process. Through these considerations, the features that are most valuable for prediction among the features used for the trial measurement and subsequent prediction were extracted based on the feature importance. Using the feature importance, the top-ranked parameters were chosen to create a machine learning model for prediction. Consequently, equivalent prediction accuracy is possible, even if the number of features, namely sensors required for the acquisition of sufficient features for the prediction, can be reduced without significantly affecting the prediction accuracy. Specifically, it was confirmed that the number of sensors can be reduced from about 65 to about 4 for the spindle model and about 20 for the servomotor.

References

1.
Mayr
,
J.
,
Jedrzejewski
,
J.
,
Uhlmann
,
E.
,
Alkan Donmez
,
M.
,
Knapp
,
W.
,
Härtig
,
F.
,
Wendt
,
K.
, et al
,
2012
, “
Thermal Issues in Machine Tools
,”
CIRP Ann.
,
61
(
1
), pp.
771
791
.
2.
Gebhardt
,
M.
,
Mayr
,
J.
,
Furrer
,
N.
,
Widmer
,
T.
,
Weikert
,
S.
, and
Knapp
,
W.
,
2014
, “
High Precision Grey-Box Model for Compensation of Thermal Errors on Five-Axis Machines
,”
CIRP Ann.
,
63
(
1
), pp.
509
512
.
3.
Florussen
,
G. H. J.
,
Delbressine
,
F. L. M.
, and
Schellekens
,
P. H. J.
,
2003
, “
Assessing Thermally Induced Errors of Machine Tools by 3D Length Measurements
,”
CIRP Ann.
,
52
(
1
), pp.
333
336
.
4.
Mayr
,
J.
,
Ess
,
M.
,
Pavliček
,
F.
,
Weikert
,
S.
,
Spescha
,
D.
, and
Knapp
,
W.
,
2015
, “
Simulation and Measurement of Environmental Influences on Machines in Frequency Domain
,”
CIRP Ann.
,
64
(
1
), pp.
479
482
.
5.
Mize
,
C. D.
, and
Ziegert
,
J. C.
,
2000
, “
Neural Network Thermal Error Compensation of a Machining Center
,”
Precis. Eng.
,
24
(
4
), pp.
338
346
.
6.
Zhang
,
Y.
,
Yang
,
J.
, and
Jiang
,
H.
,
2012
, “
Machine Tool Thermal Error Modeling and Prediction by Grey Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
59
(
9–12
), pp.
1065
1072
.
7.
Basheer
,
I. A.
, and
Hajmeer
,
M.
,
2000
, “
Artificial Neural Networks: Fundamentals, Computing, Design, and Application
,”
J. Microbiol. Methods
,
43
(
1
), pp.
3
31
.
8.
Gunning
,
D.
, and
Aha
D. W.
,
2019
, “
DARPA’s Explainable Artificial Intelligence (XAI) Program
,”
AI Magazine
,
40
(
2
), pp.
44
58
.
9.
Barredo-Arrieta
,
A.
,
Díaz-Rodríguez
,
N.
,
Del Ser
,
J.
,
Bennetot
,
A.
,
Tabik
,
S.
,
Barbado
,
A.
,
Garcia
,
S.
, et al
,
2020
, “
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI
,”
Inform. Fus.
,
58
, pp.
82
115
.
10.
Li
,
L.
,
Dai
,
S.
,
Cao
,
Z.
,
Hong
,
J.
,
Jiang
,
S.
, and
Yang
,
K.
,
2020
, “
Using Improved Gradient-Boosted Decision Tree Algorithm Based on Kalman Filter (GBDT-KF) in Time Series Prediction
,”
J. Supercomput.
,
76
(
9
), pp.
6887
6900
.
11.
Zhang
,
W.
,
Yu
,
J.
,
Zhao
,
A.
, and
Zhou
,
X.
,
2021
, “
Predictive Model of Cooling Load for Ice Storage Air-Conditioning System by Using GBDT
,”
Energy Rep.
,
7
, pp.
1588
1597
.
12.
Wu
,
W.
,
Wang
,
J.
,
Huang
,
Y.
,
Zhao
,
H.
, and
Wang
,
X.
,
2021
, “
A Novel Way to Determine Transient Heat Flux Based on GBDT Machine Learning Algorithm
,”
Int. J. Heat Mass Transfer
,
179
, p.
121746
.
13.
Yang
,
J.
,
Zhao
,
C.
,
Yu
,
H.
, and
Chen
,
H.
,
2020
, “
Use GBDT to Predict the Stock Market
,”
Proc. Comput. Sci.
,
174
, pp.
161
171
.
14.
Gao
,
J.
,
Zhang
,
L.
,
Yu
,
G.
,
Qu
,
G.
,
Li
,
Y.
, and
Yang
,
X.
,
2020
, “
Model With the GBDT for Colorectal Adenoma Risk Diagnosis
,”
Curr. Bioinf.
,
15
(
9
), pp.
971
979
.
15.
Li
,
D.
, and
Ma
,
C.
,
2022
, “
Research on Lane Change Prediction Model Based on GBDT
,”
Phys. A: Stat. Mech. Appl.
,
608
(
Part 1
), p.
128290
.
16.
Wang
,
J.
,
Wei
,
G.
, and
Zhang
,
Y.
,
2021
, “
Spindle Trajectory Prediction and Workpiece Error Analysis Based on Gradient Boosting Decision Tree
,”
International Conference on Computing and Artificial Intelligence
,
Tianjin, China
,
Apr. 23–26
, p.
424
.
17.
Flores
,
V.
, and
Keith
,
B.
,
2019
, “
Gradient Boosted Trees Predictive Models for Surface Roughness in High-Speed Milling in the Steel and Aluminum Metalworking Industry
,”
Complexity
,
2019
(
1
), p.
1536716
.
18.
Ke
,
G.
,
Meng
,
Q.
,
Finley
,
T.
,
Wang
,
T.
,
Chen
,
W.
,
Ma
,
W.
,
Ye
,
Q.
, and
Liu
,
T.-Y.
,
2017
, “
Lightgbm: A Highly Efficient Gradient Boosting Decision Tree
,”
Adv. Neural Inform. Process. Syst.
,
30
, pp.
3146
3154
.
19.
Ju
,
Y.
,
Sun
,
G.
,
Chen
,
Q.
,
Zhang
,
M.
,
Zhu
,
H.
, and
Rehman
,
M. U.
,
2019
, “
A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting
,”
IEEE Access
,
7
, pp.
28309
28318
.
20.
Zhang
,
Y.
,
Zhu
,
C.
, and
Wang
,
Q.
,
2020
, “
LightGBM-Based Model for Metro Passenger Volume Forecasting
,”
IET Intell. Transp. Syst.
,
14
(
13
), pp.
1815
1823
.
21.
Wang
,
B.
,
Wu
,
P.
,
Chen
,
Q.
, and
Ni
,
S.
,
2021
, “
Prediction, Analysis of Train Passenger Load Factor of High-Speed Railway Based on LightGBM Algorithm
,”
J. Adv. Transport.
,
2021
, p. 9963394. doi.org/10.1155/2021/9963394
22.
Wang
,
Y.
,
Chen
,
J.
,
Chen
,
X.
,
Zeng
,
X.
,
Kong
,
Y.
,
Sun
,
S.
,
Guo
,
Y.
, and
Liu
,
Y.
,
2021
, “
Short-Term Load Forecasting for Industrial Customers Based on TCN-LightGBM
,”
IEEE Trans. Power Syst.
,
36
(
3
), pp.
1984
1997
. May.
23.
Zhang
,
J.
,
Mucs
,
D.
,
Norinder
,
U.
, and
Svensson
,
F.
,
2019
, “
LightGBM: An Effective and Scalable Algorithm for Prediction of Chemical Toxicity – Application to the Tox21 and Mutagenicity Data Sets
,”
J. Chem. Inf. Model.
,
59
(
10
), pp.
4150
4158
.
24.
Wang
,
Y.
, and
Wang
,
T.
,
2020
, “
Application of Improved LightGBM Model in Blood Glucose Prediction
,”
Appl. Sci.
,
10
(
9
), p.
3227
.
25.
Rufo
,
D. D.
,
Debelee
,
T. G.
,
Ibenthal
,
A.
, and
Negera
,
W. G.
,
2021
, “
Diagnosis of Diabetes Mellitus Using Gradient Boosting Machine (LightGBM)
,”
Diagnostics
,
11
(
9
), p.
1714
.
26.
Ponsam
,
J. G.
,
Bella Gracia
,
S. V. J.
,
Geetha
,
G.
,
Karpaselvi
,
S.
, and
Nimala
,
K.
,
2021
, “
Credit Risk Analysis Using LightGBM and a Comparative Study of Popular Algorithms
,”
2021 Fourth International Conference on Computing and Communications Technologies (ICCCT)
,
Chennai, India
,
Dec. 16–17
, pp.
634
641
.
27.
Tang
,
M.
,
Zhao
,
Q.
,
Ding
,
S. X.
,
Wu
,
H.
,
Li
,
L.
,
Long
,
W.
, and
Huang
,
B.
,
2020
, “
An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes
,”
Energies
,
13
(
4
), p.
807
.
28.
Yang
,
H.
,
Chen
,
Z.
,
Yang
,
H.
, and
Tian
,
M.
,
2023
, “
Predicting Coronary Heart Disease Using an Improved LightGBM Model: Performance Analysis and Comparison
,”
IEEE Access
,
11
, pp.
23366
23380
.
29.
Cao
,
Q.
,
Wu
,
Y.
,
Yang
,
J.
, and
Yin
,
J.
,
2023
, “
Greenhouse Temperature Prediction Based on Time-Series Features and LightGBM
,”
Appl. Sci.
,
13
(
3
), p.
1610
.
30.
Yin
,
Z.
,
Shi
,
L.
,
Luo
,
J.
,
Xu
,
S.
,
Yuan
,
Y.
,
Tan
,
X.
, and
Zhu
,
J.
,
2023
, “
Pump Feature Construction and Electrical Energy Consumption Prediction Based on Feature Engineering and LightGBM Algorithm
,”
Sustainability
,
15
(
1
), p.
789
.
31.
Guo
,
M.
,
Guo
,
Y.
,
Peng
,
Y.
,
Zhang
,
W.
, and
Ling
,
Q.
,
2023
, “
Fault Diagnosis of Bolt Loosening Based on LightGBM Recognition of Sound Signal Features
,”
IEEE Sens. J.
,
23
(
19
), pp.
22777
22787
.
32.
Saberi
,
A. N.
,
Belahcen
,
A.
,
Sobra
,
J.
, and
Vaimann
,
T.
,
2022
, “
LightGBM-Based Fault Diagnosis of Rotating Machinery Under Changing Working Conditions Using Modified Recursive Feature Elimination
,”
IEEE Access
,
10
, pp.
81910
81925
.
33.
Wang
,
N.
,
Zhang
,
G.
,
Ren
,
L.
,
Pang
,
W.
, and
Wang
,
Y.
,
2021
, “
Vision and Sound Fusion-Based Material Removal Rate Monitoring for Abrasive Belt Grinding Using Improved LightGBM Algorithm
,”
J. Manuf. Process.
,
66
, pp.
281
292
.
34.
Wang
,
N.
,
Zhang
,
G.
,
Pang
,
W.
,
Ren
,
L.
, and
Wang
,
Y.
,
2021
, “
Novel Monitoring Method for Material Removal Rate Considering Quantitative Wear of Abrasive Belts Based on LightGBM Learning Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
114
(
11–12
), pp.
3241
3253
.
35.
Li
,
Y.
,
Meng
,
X.
,
Zhang
,
Z.
, and
Song
,
G.
,
2019
, “
A Remaining Useful Life Prediction Method Considering the Dimension Optimization and the Iterative Speed
,”
IEEE Access
,
7
, pp.
180383
180394
.
36.
Liang
,
W.
,
Luo
,
S.
,
Zhao
,
G.
, and
Wu
,
H.
,
2020
, “
Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms
,”
Mathematics
,
8
(
5
), p.
765
.
37.
Bryan
,
J.
,
1990
, “
International Status of Thermal Error Research (1990)
,”
CIRP Ann.
,
39
(
2
), pp.
645
656
.
38.
JSME Data Book
,
2017
,
Heat Transfer
, 5th ed.,
Maruzen
,
Japan
.
39.
Geman
,
S.
,
Bienenstock
,
E.
, and
Doursat
,
R.
,
1992
, “
Neural Networks and the Bias-Variance Dilemma
,”
Neural Comput.
,
4
(
1
), pp.
1
58
.
40.
Wakiya
,
S.
,
Ishida
,
R.
,
Kusuyama
,
J.
, and
Nakao
,
Y.
,
2023
, “
Temperature Control Performance of a Built-In Motor Spindle by Developed Temperature Feedback Control System
,”
Int. J. Autom. Technol.
,
17
(
5
), pp.
512
520
.
You do not currently have access to this content.