Graphical Abstract Figure

Two-dimensional indentation of the cutting edge into the wavy workpiece surface

Graphical Abstract Figure

Two-dimensional indentation of the cutting edge into the wavy workpiece surface

Close modal

Abstract

Chatter vibrations in machining degrade the surface quality, cause premature tool and machine failures, and reduce the productivity. The dynamic interference between the cutting tool and the wavy part surface damps the machining process in the presence of vibrations. Machining process damping improves the chatter stability especially for difficult-to-cut materials and is even more pronounced via optimized cutting edge geometries. However, there is not any analytical model that can consider arbitrary edge profiles in modeling the process damping. This study introduces a new generalized analytical model to predict the process damping forces for any two-dimensional cutting edge geometries by taking the vibration parameters, work material properties, cutting conditions, and cutting edge geometry into account. That is achieved by discretizing the tool–workpiece contact using a series of springs with a nonlinear Winkler foundation and by employing a material constitutive model to describe the behavior of the deformed springs beyond elasticity. The process damping force is calculated from the contact pressure between the edge and the work material and linearized with an equivalent viscous damper dissipating the same energy. The proposed model has been verified experimentally and numerically for different tool geometries. It is demonstrated that the model can eliminate the time-intensive experimental and numerical identification of process damping coefficients and can digitalize the design phase of cutting tools by rapidly evaluating their machining dynamics performance in place of physical tests.

References

1.
Suyama
,
D. I.
, and
Diniz
,
A. E.
,
2020
, “
Influence of Tool Vibrations on Tool Wear Mechanisms in Internal Turning of Hardened Steel
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
7
), p.
370
.
2.
Ren
,
Y.-Y.
,
Wan
,
M.
,
Zhang
,
W.-H.
, and
Yang
,
Y.
,
2023
, “
A Review on Methods for Obtaining Dynamical Property Parameters of Machining Processes
,”
Mech. Syst. Signal Process.
,
194
, p.
110280
.
3.
Li
,
Z.
,
Song
,
Q.
,
Jin
,
P.
,
Liu
,
Z.
,
Wang
,
B.
, and
Ma
,
H.
,
2023
, “
Chatter Suppression Techniques in Milling Processes: A State of the Art Review
,”
Chin. J. Aeronaut.
,
37
(
7
), pp.
1
23
.
4.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann.
,
65
(
2
), pp.
785
808
.
5.
Feng
,
J.
, and
Liu
,
X.-T.
,
2023
, “
Mechanism and Modeling of Machining Process Damping: A Review
,”
Int. J. Adv. Manuf. Technol.
,
127
(
3–4
), pp.
1045
1069
.
6.
Jin
,
X.
, “
Identification of Process Damping Coefficient Based on Material Constitutive Property
,”
Proceedings of ASME 2014 International Manufacturing Science and Engineering Conference Collocated With the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
,
Detroit, MI
,
June 9–13
.
7.
Wu
,
D. W.
,
1989
, “
A New Approach of Formulating the Transfer Function for Dynamic Cutting Processes
,”
ASME J. Eng. Ind.
,
111
(
1
), pp.
37
47
.
8.
Ahmadi
,
K.
, and
Ismail
,
F.
,
2011
, “
Analytical Stability Lobes Including Nonlinear Process Damping Effect on Machining Chatter
,”
Int. J. Mach. Tools Manuf.
,
51
(
4
), pp.
296
308
.
9.
Cao
,
C.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2016
, “
An Improved Algorithm for Cutting Stability Estimation Considering Process Damping
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
2029
2038
.
10.
Ahmadi
,
K.
, and
Altintas
,
Y.
,
2014
, “
Identification of Machining Process Damping Using Output-Only Modal Analysis
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051017
.
11.
Budak
,
E.
, and
Tunc
,
L. T.
,
2009
, “
A New Method for Identification and Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051019
.
12.
Tunc
,
L. T.
, and
Budak
,
E.
,
2013
, “
Identification and Modeling of Process Damping in Milling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021001
.
13.
Wan
,
M.
,
Feng
,
J.
,
Ma
,
Y.-C.
, and
Zhang
,
W.-H.
,
2017
, “
Identification of Milling Process Damping Using Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
122
, pp.
120
131
.
14.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.
,
57
(
1
), pp.
371
374
.
15.
Suzuki
,
N.
,
Nakanomiya
,
T.
, and
Shamoto
,
E.
, “
Chatter Stability Prediction of Cutting Process With Process Damping Utilizing Finite Element Analysis
,”
Proceedings of JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing
,
Virtual, Online
,
Sept. 3
, p. V001T03A010.
16.
Jin
,
X.
, and
Altintas
,
Y.
,
2013
, “
Chatter Stability Model of Micro-Milling With Process Damping
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031011
.
17.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Analytical Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061006
.
18.
Shawky
,
A. M.
, and
Elbestawi
,
M. A.
,
1997
, “
An Enhanced Dynamic Model in Turning Including the Effect of Ploughing Forces
,”
ASME J. Manuf. Sci. Eng.
,
119
(
1
), pp.
10
20
.
19.
Denkena
,
B.
,
Bickel
,
W.
, and
Sellmeier
,
V.
,
2012
, “
Flank Milling of Compliant Workpieces With Chamfered Tools
,”
Prod. Eng.
,
6
(
4–5
), pp.
403
412
.
20.
Denkena
,
B.
,
Grabowski
,
R.
,
Krödel
,
A.
, and
Ellersiek
,
L.
,
2020
, “
Time-Domain Simulation of Milling Processes Including Process Damping
,”
CIRP J. Manuf. Sci. Technol.
,
30
, pp.
149
156
.
21.
Wöste
,
F.
,
Platt
,
T.
,
Baumann
,
J.
,
Biermann
,
D.
, and
Wiederkehr
,
P.
,
2023
, “
Fundamental Investigation on Process Damping Potentials of Cutting Tools With Flank Face Chamfers
,”
CIRP J. Manuf. Sci. Technol.
,
47
, pp.
7
17
.
22.
Suzuki
,
N.
,
Takahashi
,
W.
,
Igeta
,
H.
, and
Nakanomiya
,
T.
,
2020
, “
Flank Face Texture Design to Suppress Chatter Vibration in Cutting
,”
CIRP Ann.
,
69
(
1
), pp.
93
96
.
23.
Takahashi
,
W.
,
Nakanomiya
,
T.
,
Suzuki
,
N.
, and
Shamoto
,
E.
,
2021
, “
Influence of Flank Texture Patterns on the Suppression of Chatter Vibration and Flank Adhesion in Turning Operations
,”
Precis. Eng.
,
68
, pp.
262
272
.
24.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
25.
Psaroudakis
,
E. G.
,
Mylonakis
,
G. E.
, and
Klimis
,
N. S.
,
2020
, “
Non-linear Analysis of Laterally Loaded Piles Using “p-y” Curves
,”
Geotech. Geol. Eng.
,
39
(
2
), pp.
1541
1556
.
26.
Alver
,
O.
, and
Eseller-Bayat
,
E. E.
,
2024
, “
A New p–y Model for Soil-Pile Interaction Analyses in Cohesionless Soils Under Monotonic Loading
,”
Soils Found.
,
64
(
2
), p.
101441
.
27.
Wu
,
D. W.
,
1988
, “
Application of a Comprehensive Dynamic Cutting Force Model to Orthogonal Wave-Generating Processes
,”
Int. J. Mech. Sci.
,
30
(
8
), pp.
581
600
.
28.
Gao
,
X. L.
,
Jing
,
X. N.
, and
Subhash
,
G.
,
2006
, “
Two New Expanding Cavity Models for Indentation Deformations of Elastic Strain-Hardening Materials
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2193
2208
.
29.
Bodapati
,
B. R.
,
Sudharshan Phani
,
P.
,
Bhattacharjee
,
P. P.
, and
Sundararajan
,
G.
,
2018
, “
On the Constraint Factor and Tabor Coefficient Pertinent to Spherical Indentation
,”
Trans. Indian Inst. Met.
,
71
(
12
), pp.
2893
2901
.
30.
Sellmeier
,
V.
, and
Denkena
,
B.
,
2012
, “
High Speed Process Damping in Milling
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
1
), pp.
8
19
.
31.
Zannoun
,
H.
, and
Schoop
,
J.
,
2023
, “
Analysis of Burr Formation in Finish Machining of Nickel-Based Superalloy With Worn Tools Using Micro-scale In-Situ Techniques
,”
Int. J. Mach. Tools Manuf.
,
189
, p.
104030
.
32.
Aich
,
Z.
,
Haddouche
,
K.
,
Djellouli
,
K.
, and
Ghezal
,
A.
,
2023
, “
An Improved Thermomechanical Modeling for Orthogonal Cutting of AISI 1045 Steel
,”
Results Eng.
,
17
, p.
100789
.
33.
Laakso
,
S. V. A.
,
2017
, “
Heat Matters When Matter Heats—The Effect of Temperature-Dependent Material Properties on Metal Cutting Simulations
,”
J. Manuf. Process.
,
27
, pp.
261
275
.
34.
Flores-Johnson
,
E. A.
,
Shen
,
L.
,
Guiamatsia
,
I.
, and
Nguyen
,
G. D.
,
2014
, “
Numerical Investigation of the Impact Behaviour of Bioinspired Nacre-Like Aluminium Composite Plates
,”
Compos. Sci. Technol.
,
96
, pp.
13
22
.
35.
Hernot
,
X.
,
Moussa
,
C.
, and
Bartier
,
O.
,
2014
, “
Study of the Concept of Representative Strain and Constraint Factor Introduced by Vickers Indentation
,”
Mech. Mater.
,
68
, pp.
1
14
.
36.
Ghani
,
J. A.
,
Ismanizan
,
M. A.
,
Rahman
,
H. A.
,
Che Haron
,
C. H.
,
Juri
,
A. Z.
,
Kasim
,
M. S.
, and
Rizal
,
M
.,
2024
, “
Machining Analysis of S45C Carbon Steel Using Finite Element Method
,”
J. Tribol.
,
40
, pp.
226
246
.
37.
Zhao
,
H.
,
Zhong
,
Y.
, and
Ma
,
Z.
,
2016
, “
Effects of Indentation Depth on Micro Hardness and Scratch Behavior of Thin Composite Laminate
,”
J. Alloys Compd.
,
680
, pp.
105
108
.
38.
Theraroz
,
J.
, and
Tuysuz
,
O.
,
2024
, “
A General Analytical Approach to Predict Machining Process Damping
,”
Proc. 19th International Manufacturing Science and Engineering Conference
,
ASME
, pp.
226
246
..
You do not currently have access to this content.