Abstract

In order to enhance the machinability of SiCp/Al composites and improve the surface quality after machining, a laser-ultrasonic vibration-assisted machining (LA-UVAM) method is presented. In order to investigate the deformation mechanism in the material and the mechanism of surface formation in LA-UVAM, a finite element model of LA-UVAM was established. Using the secondary development imported into abaqus, the Johnson–Cook principal equations containing strain gradients were programmed into the user subroutine VUMAT for simulation. Combining the simulation and experimental results, the influence of dislocation motion in the temperature, stress, and strain gradient effects on cutting deformation during SiCp/Al composite machining was analyzed from the perspective of material dislocation theory. The results show that the presence of SiC particles changes the microstructure of the matrix material and induces high strain gradients in the matrix. In addition, the damage of the particles is closely related to their relative position to the tool. LA-UVAM significantly improves the surface quality with fewer broken particles and defects on the machined surface compared to the conventional machining method. The simulation results are in good agreement with the cutting experiment results. Therefore, LA-UVAM can be used for the efficient machining of SiCp/Al composites.

References

1.
Fan
,
Y.
,
Xu
,
Y.
,
Hao
,
Z.
, and
Lin
,
J.
,
2021
, “
Cutting Deformation Mechanism of SiCp/Al Composites Based on Strain Gradient Theory
,”
J. Mater. Process. Technol.
,
299
(
5
), p.
117345
.
2.
Lu
,
S.
,
Zhang
,
J.
,
Li
,
Z.
,
Zhang
,
J.
,
Wang
,
X.
,
Hartmaier
,
A.
,
Xu
,
J.
,
Yan
,
Y.
, and
Sun
,
T.
,
2021
, “
Cutting Path-Dependent Machinability of SiCp/Al Composite Under Multi-step Ultraprecision Diamond Cutting
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
241
252
.
3.
Liao
,
Z.
,
Abdelhafeez
,
A.
,
Li
,
H.
,
Yang
,
Y.
,
Diaz
,
O. G.
, and
Axinte
,
D.
,
2019
, “
State-of-the-Art of Surface Integrity in Machining of Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
143
, pp.
63
91
.
4.
Pramanik
,
A.
,
2014
, “
Developments in the Non-Traditional Machining of Particle Reinforced Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
86
, pp.
44
61
.
5.
Kong
,
X. J.
,
Hu
,
G.
,
Wang
,
M. H.
,
Zhao
,
M.
, and
Wang
,
Z. L.
,
2022
, “
Investigations on Chip Formation Mechanism and Surface Integrity Analysis in LAM of 45%SiCp/Al Composites
,”
Int. J. Adv. Manuf. Technol.
,
123
(
7–8
), pp.
2279
2293
.
6.
Xia
,
C. Y.
,
Lin
,
J. Q.
,
Lu
,
M. M.
,
Zhang
,
X. J.
, and
Chen
,
S.
,
2024
, “
Study on Machinability of SiCp/Al Composites by Laser-Induced Oxidation-Assisted Turning
,”
J. Mater. Eng. Perform.
, pp.
1
13
.
7.
Wei
,
C.
,
Guo
,
W.
,
Pratomo
,
E. S.
,
Li
,
Q.
,
Wang
,
D.
,
Whitehead
,
D.
, and
Li
,
L.
,
2020
, “
High Speed, High Power Density Laser-Assisted Machining of Al-SiC Metal Matrix Composite With Significant Increase in Productivity and Surface Quality
,”
J. Mater. Process. Technol.
,
285
, p.
116784
.
8.
Abedinzadeh
,
R.
,
Norouzi
,
E.
, and
Toghraie
,
D.
,
2022
, “
Study on Machining Characteristics of SiC–Al2O3 Reinforced Aluminum Hybrid Nanocomposite in Conventional and Laser Assisted Turning
,”
Ceram. Int.
,
48
(
19
), pp.
29205
29216
.
9.
Yang
,
Z.
,
Zhu
,
L.
,
Zhang
,
G.
,
Ni
,
C.
, and
Lin
,
B.
,
2020
, “
Review of Ultrasonic Vibration-Assisted Machining in Advanced Materials
,”
Int. J. Mach. Tools Manuf.
,
156
, p.
103594
.
10.
Zhou
,
J.
,
Lu
,
M.
,
Lin
,
J.
, and
Du
,
Y.
,
2021
, “
Elliptic Vibration Assisted Cutting of Metal Matrix Composite Reinforced by Silicon Carbide: An Investigation of Machining Mechanisms and Surface Integrity
,”
J. Mater. Res. Technol.
,
15
, pp.
1115
1129
.
11.
Zhou
,
M.
, and
Hu
,
L.
,
2015
, “
Development of an Innovative Device for Ultrasonic Elliptical Vibration Cutting
,”
Ultrasonics
,
60
, pp.
76
81
.
12.
Liu
,
J.
,
Jiang
,
X.
,
Han
,
X.
,
Gao
,
Z.
, and
Zhang
,
D.
,
2018
, “
Effects of Rotary Ultrasonic Elliptical Machining for Side Milling on the Surface Integrity of Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5
), pp.
1451
1465
.
13.
An
,
Q.
,
Chen
,
J.
,
Ming
,
W.
, and
Chen
,
M.
,
2021
, “
Machining of SiC Ceramic Matrix Composites: A Review
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
540
567
.
14.
Zhong
,
L.
,
2000
, “
Deformation Behavior and Microstructure Effect in 2124Al/SiCp Composite
,”
J. Compos. Mater.
,
34
(
2
), pp.
101
115
.
15.
Backer
,
W. R.
,
Marshall
,
E. R.
, and
Shaw
,
M. C.
,
1952
, “
The Size Effect in Metal Cutting
,”
Trans. ASME
,
74
(
1
), pp.
61
71
.
16.
Nakayama
,
K.
, and
Tamura
,
K.
,
1968
, “
Size Effect in Metal-Cutting Force
,”
J. Eng. Ind.
,
90
(
1
), pp.
119
126
.
17.
Dinesh
,
D.
,
Swaminathan
,
S.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
2001
, “
An Intrinsic Size-Effect in Machining Due to the Strain Gradient
,”
Proceedings of 2001 ASME IMECE
,
New York
,
Nov. 11–16
, pp.
197
204
.
18.
Joshi
,
S. S.
, and
Melkote
,
S. N.
,
2004
, “
An Explanation for the Size-Effect in Machining Based on Strain Gradient Plasticity
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
679
684
.
19.
Gao
,
H.
, and
Huang
,
Y.
,
2001
, “
Taylor-Based Nonlocal Theory of Plasticity
,”
Int. J. Solids Struct.
,
38
(
15
), pp.
2615
2637
.
20.
Han
,
L.
,
Zhang
,
J.
,
Chen
,
J.
,
Zhang
,
J.
,
Liu
,
H.
,
Yan
,
Y.
, and
Sun
,
T.
,
2020
, “
Influence of Vibration Parameters on Ultrasonic Elliptical Vibration Cutting of Reaction-Bonded Silicon Carbide
,”
Int. J. Adv. Des. Manuf. Technol.
,
108
(
1–2
), pp.
427
437
.
21.
Deng
,
B.
,
Peng
,
F.
,
Zhou
,
L.
,
Yan
,
R.
,
Wang
,
H.
, and
Yang
,
M.
,
2021
, “
Study on the Surface Layer Formation of Aluminum Matrix Composites and Associated Machinability in Precision Milling Based on Laser Melting Modification
,”
J. Manuf. Processes
,
62
, pp.
670
684
.
22.
Kannatey-Asibu
,
E.
,
2009
,
Principles of Laser Materials Processing
,
Wiley
,
New York
.
23.
Yu
,
W.
,
Chen
,
J.
,
Ming
,
W.
,
An
,
Q.
, and
Chen
,
M.
,
2021
, “
Experimental and FEM Study of Cutting Mechanism and Damage Behavior of Ceramic Particles in Orthogonal Cutting SiCp/Al Composites
,”
Ceram. Int.
,
47
(
5
), pp.
7183
7194
.
24.
Ji-ning
,
L.
,
2020
,
Study on Cutting Deformation Mechanism of Nickel-Based High Temperature Alloy GH4169 Based on Strain Gradient Theory
,
Changchun University of Technology
,
Changchun, China
. DOI:10.27805/d.cnki.gccgy.2020.000282.
25.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
26.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.
27.
Hou
,
X.
,
Liu
,
Z. Q.
,
Wang
,
B.
,
Lv
,
W. Y.
,
Liang
,
X. L.
, and
Hua
,
Y.
,
2018
, “
Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V Over the Wide Ranges of Strain Rate and Temperature
,”
Materials
,
11
(
6
), pp.
938
.
28.
Joshi
,
S. S.
, and
Melkote
,
S. N.
,
2004
, “
An Explanation for the Size-Effect in Machining Based on Strain Gradient Plasticity
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
679
684
.
29.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process, II. Plasticity Conditions in Orthogonal Cutting
,”
J. Appl. Phys.
,
16
(
6
), pp.
318
324
.
30.
Zhou
,
L.
,
Peng
,
F. Y.
,
Yan
,
R.
,
Yao
,
P. F.
,
Yang
,
C. C.
, and
Li
,
B.
,
2015
, “
Analytical Modeling and Experimental Validation of Micro End-Milling Cutting Forces Considering Edge Radius and Material Strengthening Effects
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
29
41
.
31.
Wen
,
J.
,
He
,
L.
,
Zhou
,
T.
, et al
,
2023
, “
Modelling of Austenitic Stainless Steel Polycrystalline Cutting and Burr Simulation Analysis
,”
Tool Technol.
,
57
(
10
), pp.
69
75
.
32.
Teng
,
X.
,
Chen
,
W.
,
Huo
,
D.
,
Shyha
,
I.
, and
Lin
,
C.
,
2018
, “
Comparison of Cutting Mechanism When Machining Micro and Nano-Particles Reinforced SiC/Al Metal Matrix Composites
,”
Compos. Struct.
,
203
, pp.
636
647
.
33.
Kan
,
Y.
,
Liu
,
Z. G.
,
Zhang
,
S. H.
,
Zhang
,
L. W.
,
Cheng
,
M.
, and
Song
,
H. W.
,
2014
, “
Microstructure Based Numerical Simulation of the Tensile Behavior of SiCp/Al Composites
,”
J. Mater. Eng. Perform.
,
23
(
3
), pp.
1069
1076
.
34.
Zou
,
Z.
, and
Lee
,
H.
,
2017
, “
A Cohesive Zone Model Taking Account of the Effect of Through-Thickness Compression
,”
Compos. Part A
,
98
, pp.
90
98
.
35.
Meng
,
B.
,
Cao
,
B. N.
,
Wan
,
M.
,
Wang
,
C. J.
, and
Shan
,
D. B.
,
2019
, “
Constitutive Behavior and Microstructural Evolution in Ultrasonic Vibration Assisted Deformation of Ultrathin Superalloy Sheet
,”
Int. J. Mech. Sci.
,
157
, pp.
609
618
.
36.
Shao
,
G.
,
Li
,
H.
,
Zhang
,
X.
,
Zhan
,
M.
, and
Xiang
,
Z.
,
2022
, “
Characteristics and Mechanism in Ultrasonic Vibration-Assisted Deformation of Ni-Based Superalloy Thin-Walled Sheet by Quasi-In-Situ EBSD
,”
J. Alloys Compd.
,
908
(
22
), p.
164591
.
37.
Zheng
,
Y.
,
Wang
,
C.
,
Ma
,
J.
,
Li
,
H.
,
Li
,
Y.
, and
Luo
,
C.
,
2023
, “
Gradient Characteristics of Surface Metamorphic Layer Microstructure Induced by Longitudinal Torsional Ultrasonic-Assisted Milling Ti-6Al-4V Alloy
,”
J. Mater. Eng. Perform.
,
32
(
22
), pp.
10141
10157
.
38.
Deshpande
,
A.
, and
Hsu
,
K.
,
2018
, “
Acoustic Energy Enabled Dynamic Recovery in Aluminium and Its Effects on Stress Evolution and Post-Deformation Microstructure
,”
Mater. Sci. Eng. A
,
711
, pp.
62
68
.
You do not currently have access to this content.