Titanium alloys such as A-110AT, B-120VCA, C-120AV, and 6-6-2AVT, which have been used to manufacture structural components for the aerospace industry, are difficult to machine when compared to aluminum and even some steel alloys. Tool wear for high-speed tool steel and carbide cutters takes place rapidly, necessitating the use of low cutting speeds and feeds to obtain a reasonable cutter life. In this study, the means used toward achieving an objective of increased producibility and reduced costs for titanium alloys was through an intensive machinability investigation of the machining characteristics. Control of pertinent machining variables, such as cutting speed, feed rate, tool material, tool geometry, machine tool setup, and cutting fluid, was rigorously maintained. Comparative cost analyses of the actual cutting operation and the attendant cutting tool costs were made concurrently with the study to obtain conditions which provided the best metal removal rate with reasonable cutter life at the lowest cost.

This content is only available via PDF.
You do not currently have access to this content.