A general method of optimal design of planar mechanisms is presented here called Selective Precision Synthesis (SPS for short), suitable for path, motion or function generation, with different arbitrary limits of accuracy at various discrete positions. It was found that the method yields fundamentally stable solutions: while in closed-form synthesis, small changes in prescribed values often result in very different solutions or no solutions at all, in SPS small perturbations in problem specifications often produce only small variations in the synthesized linkage dimensions. Such stability is rarely found in Burmester theory and other synthesis techniques. Applying nonlinear programming and introducing the dyadic construction of mechanisms, the SPS technique is applicable to the synthesis of most planar mechanisms including four-bar, five-bar, multi-loop, multi-degree of freedom and adjustable mechanisms. Also, dyadic construction simplifies the optimization process and renders the method readily manageable in interactive computer-aided design. The SPS digital computer programs for batch and tele-processing are made available to interested readers.

This content is only available via PDF.
You do not currently have access to this content.