Stress corrosion cracking is a phenomenon that can lead to sudden failure of metallic components. Here, we use laser shock peening (LSP) as a surface treatment for mitigation of stress corrosion cracking (SCC), and explore how the material differences of 304 stainless steel, 4140 high strength steel, and 260 brass affect their mitigation. Cathodic charging of the samples in 1 M sulfuric acid was performed to accelerate hydrogen uptake. Nontreated stainless steel samples underwent hardness increases of 28%, but LSP treated samples only increased in the range of 0–8%, indicative that LSP keeps hydrogen from permeating into the metal. Similarly for the high strength steel, LSP treating limited the hardness changes from hydrogen to less than 5%. Mechanical U-bends subjected to Mattsson's solution, NaCl, and MgCl2 environments are analyzed, to determine changes in fracture morphology. LSP treating increased the time to failure by 65% for the stainless steel, and by 40% for the high strength steel. LSP treating of the brass showed no improvement in U-bend tests. Surface chemical effects are addressed via Kelvin Probe Force Microscopy, and a finite element model comparing induced stresses is developed. Detection of any deformation induced martensite phases, which may be detrimental, is performed using X-ray diffraction. We find LSP to be beneficial for stainless and high strength steels but does not improve brass's SCC resistance. With our analysis methods, we provide a description accounting for differences between the materials, and subsequently highlight important processing considerations for implementation of the process.

References

1.
Brandl
,
E.
,
Malke
,
R.
,
Beck
,
T.
,
Wanner
,
A.
, and
Hack
,
T.
,
2009
, “
Stress Corrosion Cracking and Selective Corrosion of Copper-Zinc Alloys for the Drinking Water Installation
,”
Mater. Corros.
,
60
(
4
), pp.
251
258
.
2.
Rice
,
S.
,
2015
, “
Epic Energy Finds Gas Pipeline Rupture Was Caused by Stress Corrosion Cracking
,”
The Advertiser
, Adelaide, Australia, Apr. 22.
3.
Cox
,
B.
,
1990
, “
Environmentally-Induced Cracking of Zirconium Alloys—A Review
,”
J. Nucl. Mater.
,
170
(
1
), pp.
1
23
.
4.
Obata
,
M.
,
Sudo
,
A.
, and
Matsumoto
,
J.
,
1996
, “
The Effect of Shot Peening on Residual Stress and Stress Corrosion Cracking for Austenitic Stainless Steel
,”
6th International conference on Shot Peening
, pp.
24
33
.
5.
Chen
,
H.
,
Yao
,
Y. L.
, and
Kysar
,
J. W.
,
2004
, “
Spatially Resolved Characterization of Residual Stress Induced by Micro Scale Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), p.
226
.
6.
Zhang
,
Y.
,
Lu
,
J.
, and
Luo
,
K.
,
2013
, “
Stress Corrosion Cracking Resistance of AISI 304 SS Subjected to Laser Shock Processing
,”
Laser Shock Processing of FCC Metals
, Springer, Berlin, Germany, pp.
137
152
.
7.
Peyre
,
P.
,
Braham
,
C.
,
Ledion
,
J.
,
Berthe
,
L.
, and
Fabbro
,
R.
,
2000
, “
Corrosion Reactivity of Laser-Peened Steel Surfaces
,”
J. Mater. Eng. Perform.
,
9
(
6
), pp.
656
662
.
8.
Birnbaum
,
H. K.
, and
Sofronis
,
P.
,
1994
, “
Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture
,”
Mater. Sci. Eng. A
,
176
(
1–2
), pp.
191
202
.
9.
Akid
,
R.
, and
Dmytrakh
,
I.
,
1998
, “
Influence of Surface Deformation and Electrochemical Variables on Corrosion and Corrosion Fatigue Crack Development
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
(
7
), pp.
903
911
.
10.
Shewmon
,
P.
,
1989
,
Diffusion in Solids
,
The Minerals, Metals, and Materials Society
,
Warrendale, PA
.
11.
Hirth
,
J. P.
,
1980
, “
Effects of Hydrogen on the Properties of Iron and Steel
,”
Metall. Trans. A
,
11
(
6
), pp.
861
890
.
12.
Kamoutsi
,
H.
,
Haidemenopoulos
,
G. N.
,
Bontozoglou
,
V.
, and
Pantelakis
,
S.
,
2006
, “
Corrosion-Induced Hydrogen Embrittlement in Aluminum Alloy 2024
,”
Corros. Sci.
,
48
(
5
), pp.
1209
1224
.
13.
Peyre
,
P.
, and
Fabbro
,
R.
,
1995
, “
Laser Shock Processing: A Review of the Physics and Applications
,”
Opt. Quantum Electron.
,
27
(
12
), pp.
1213
1229
.
14.
Fan
,
Y.
,
Wang
,
Y.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
,
2005
, “
Wave-Solid Interactions in Laser-Shock-Induced Deformation Processes
,”
J. Appl. Phys.
,
98
(
10
), p.
104904
.
15.
Navai
,
F.
,
1995
, “
Effects of Tensile and Compressive Stresses on the Passive Layers Formed on a Type 302 Stainless Steel in a Normal Sulphuric Acid Bath
,”
J. Mater. Sci.
,
30
(
5
), pp.
1166
1172
.
16.
Chen
,
H.
,
Kysar
,
J. W.
, and
Yao
,
Y. L.
,
2004
, “
Characterization of Plastic Deformation Induced by Microscale Laser Shock Peening
,”
ASME J. Appl. Mech.
,
71
(
5
), p.
713
.
17.
Krom
,
A. H. M.
, and
Bakker
,
A.
,
2000
, “
Hydrogen Trapping Models in Steel
,”
Metall. Mater. Trans. B
,
31
(
6
), pp.
1475
1482
.
18.
Malygin
,
G. A.
,
1990
, “
Dislocation Density Evolution Equation and Strain Hardening of F.C.C. Crystals
,”
Phys. Status Solidi
,
119
(
2
), pp.
423
436
.
19.
Druffner
,
C.
,
Schumaker
,
E.
, and
Sathish
,
S.
,
2004
, “
Scanning Probe Microscopy
,”
Nondestructive Materials Characterization
,
N. G. H.
Meyendorf
, ed.,
Springer-Verlag
, Berlin, Germany, pp.
323
355
.
20.
Schmutz
,
P.
, and
Frankel
,
G. S.
,
1998
, “
Characterization of AA2024-T3 by Scanning Kelvin Probe Force Microscopy
,”
J. Electrochem. Soc.
,
145
(
7
), pp.
2285
2295
.
21.
Stratmann
,
M.
, and
Streckel
,
H.
,
1990
, “
On the Atmospheric Corrosion of Metals Which are Covered With Thin Electrolyte Layers—I: Verification of the Experimental Technique
,”
Corros. Sci.
,
30
(
6–7
), pp.
681
696
.
22.
Wang
,
X. F.
,
Li
,
W.
,
Lin
,
J. G.
, and
Xiao
,
Y.
,
2010
, “
Electronic Work Function of the Cu (100) Surface Under Different Strain States
,”
Europhys. Lett.
,
89
(
6
), p.
66004
.
23.
Li
,
W.
, and
Li
,
D. Y.
,
2005
, “
Variations of Work Function and Corrosion Behaviors of Deformed Copper Surfaces
,”
Appl. Surf. Sci.
,
240
(
1–4
), pp.
388
395
.
24.
Meyers
,
M.
, and
Murr
,
L.
,
1981
,
Shock Waves and High Strain Rate Phenomena in Metals
,
Plenum Press
,
New York
.
25.
Al Duheisat
,
S.
,
2014
, “
An Investigation of Mechanical Degradation of Pure Copper by Hydrogen
,”
Contemp. Eng. Sci.
,
7
(
4
), pp.
165
178
.
26.
Zhang
,
W.
,
Yao
,
Y. L.
,
Engineering
,
M.
, and
York
,
N.
,
2001
, “
Microscale Laser Shock Processing—Modeling, Testing, and Microstructure Characterization
,”
J. Manuf. Process.
,
3
(
2
), pp.
128
143
.
27.
Meyers
,
M. A.
,
Jarmakani
,
H.
,
Bringa
,
E. M.
, and
Remington
,
B. A.
,
2009
, “
Dislocations in Shock Compression and Release
,”
Dislocations in Solids
,
J. P.
Hirth
, and
L.
Kubin
, eds.,
Elsevier
, Oxford, UK, pp.
91
197
.
28.
Nahme
,
H.
,
Worswick
,
M.
,
Nahme
,
H.
, and
Dynamic
,
M. W.
,
1994
, “
Dynamic Properties and Spall Plane Formation of Brass
,”
J. Phys. IV
,
4
(
C8
), pp.
707
712
.
29.
Duffy
,
T. S.
,
Ahrens
,
T. J.
, and
Samples
,
A.
,
1997
, “
Dynamic Compression of an Fe–Cr–Ni Alloy to 80 GPa
,”
J. Appl. Phys.
,
82
(
1997
), pp.
4259
4269
.
You do not currently have access to this content.