It is shown that there exist approximations of the Hencky (logarithmic) finite strain tensor of various degrees of accuracy, having the following characteristics: (1) The tensors are close enough to the Hencky strain tensor for most practical purposes and coincide with it up to the quadratic term of the Taylor series expansion; (2) are easy to compute (the spectral representation being unnecessary); and (3) exhibit tension-compression symmetry (i.e., the strain tensor of the inverse transformation is minus the original strain tensor). Furthermore, an additive decomposition of the proposed strain tensor into volumetric and deviatoric (isochoric) parts is given. The deviatoric part depends on the volume change, but this dependence is negligible for materials that are incapable of large volume changes. A general relationship between the rate of the approximate Hencky strain tensor and the deformation rate tensor can be easily established.

1.
Bazˇant, Z .P., 1995, “Approximations of Logarithmic Strain Tensor,” Progress Report (submitted to Dr. M. D. Adley, Waterways Experiment Station, Vicksburg, MI), Northwestern University, Evanston, IL (Dec. 28).
2.
Bazˇant
Z. P.
,
1996
, “
Finite-Strain Generalization of Small-Strain Constitutive Relations for any Finite Strain Tensor and Additive Volumetric-Deviatoric Split
,”
Int. J. of Solids and Structures
, Vol.
33
(
20-22
), pp.
2887
2897
.
3.
Bazˇant, Z. P., 1997. “Recent advances in brittle-plastic compression failure: damage localization, scaling and finite strain,”Computational Plasticity: Fundamentals and Applications, Proc., 5th Int. Conf., COMPLAS-5, held in Barcelona, D. R. J. Owen, E. Onate and E. Hinton, eds., Int. Center for Num. Meth. in Engrg., Barcelona, pp.3–19.
4.
Bazant
Z. P.
,
Bishop
F. C.
, and
Chang
T.-P.
,
1986
, “
Confined Compression Tests of Cement Paste and Concrete up to 300 ksi.
J. of the Am. Concrete Inst.
,
83
,
553
560
.
5.
Bazˇant, Z.P., and Cedolin, L., 1991, Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, Oxford University Press, New York.
6.
Bazˇant
Z. P.
,
Xiang
Y.
, and
Prat
P. C.
,
1996
a, “
Microplane Model for Concrete. I. Stress-Strain Boundaries and Finite Strain.
,”
ASCE Journal of Engineering Mechanics
, Vol.
122
, (
3
), pp.
245
254
.
7.
Bazˇant
Z. P.
,
Xiang
Y.
,
Adley
M. D.
,
Prat
P. C.
, and
Akers
S. A.
,
1996
b,“
Microplane Model for Concrete, II. Data Delocalization and Verification
,”
ASCE J. of Engrg. Mechanics
, Vol.
122
(
3
), pp.
255
262
.
8.
Davis
E. A.
,
1937
, “
Plastic Behavior of Metals in the Strain-Hardening Range. Part II
,”
J. of Applied Physics
, Vol.
8
, pp.
213
217
.
9.
Flory
T. J.
,
1961
, “
Thermodynamic Relations for High Elastic Materials
,”
Trans. Faraday Soc.
, Vol.
57
, pp.
829
838
.
10.
Freed
A. D.
,
1995
, “
Natural Strain
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
117
, pp.
379
385
.
11.
Gurtin
M. E.
, and
Spear
K.
,
1983
, “
On the Relationship Between the Logarithmic Strain Rate and the Stretching Tensor
,”
Int. J. of Solids and Structures
, Vol.
19
, pp.
437
444
.
12.
Heiduschke
K.
,
1995
a, “
The Logarithmic Strain Space Description
,”
Intern. J. of Solids & Structures
, Vol.
32
(
8/9
) pp.
1047
1062
.
13.
Heiduschke
K.
,
1995
b, “
Axisymmetric Three-and Four-Node Finite Elements for LargeStrain Elasto–Plasticity
,”
Inter. J. for Numerical Methods in Engrg.
, Vol.
38
, pp.
2303
2324
.
14.
Heiduschke, K., 1995c,“Why, for Finite Deformations, the Updated Lagrangian Description is Obsolete,” Computational Plasticity: Fundamentals and Application, Proc., 4th Int. Conf. held in Barcelona, COMPLAS-4, D. R. J. Owen and E. Oflate, eds., Pineridge Press, Swansea, U.K., pp. 2165–2176.
15.
Heiduschke
K.
,
1996
, “
Computational Aspects of the Logarithmic Strain Description
,”
Intern. J. of Solids & Structures
, Vol.
33
(
5
), pp.
747
760
.
16.
Hencky
H.
,
1925
, “
Die Bewegungsgleichungen beim nichtstationa¨ren Fließen plastischer Massen
,”
Zeitschrift fu¨r technische Physik
, Vol.
9
, pp.
215
220
.
17.
Hencky
H.
1928
, “
U¨ber die Form des Elastizita¨tsgesetzes bei ideal elastischen Stoffen
,”
Journal of Rheology
, Vol.
2
, pp.
169
176
.
18.
Hibbitt, H. D., Karlsson, B. I., and Sorensen, P., 1995, ABAQUS Theory Manual (1994) Version 5.5. Karlsson & Sorensen, Pawtucket, RI, Sec. 4.6.1.
19.
Hill
R.
,
1968
, “
On Constitutive Inequalities for Simple Materials
,”
J. of the Mechanics and Physics of Solids
, Vol.
16
, pp.
544
555
.
20.
Hill
R.
,
1970
, “
Constitutive Inequalities for Isotropic Elastic Solids Under Finite Strain
,”
Proc. of the Royal Society London
, Series A, Vol.
314
, pp.
457
472
.
21.
Hoger
A.
,
1987
, “
The Stress Conjugate to Logarithmic Strain
,”
Int. J. of Solids and Structures
, Vol.
23
(
12
), pp.
1645
1656
.
22.
Hughes
T. J. R.
, and
Winget
J.
,
1980
, “
Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large-Deformation Analyses
,”
Int. J. of Numer. Methods in Engrg.
, Vol.
15
., pp.
1862
1867
.
23.
Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice Hall, Englewood Cliffs, N.J.
24.
Na´dai
A.
,
1937
, “
Plastic Behavior of Metals in the Strain-Hardening Range. Part I
,”
J. of Applied Physics
, Vol.
8
, pp.
205
213
.
25.
Ogden, R. W., 1984, Non-Linear Elastic Deformations, Ellis Horwood, Ltd., Chichester, U.K. and Wiley, Chichester, U.K.
26.
Rashid
M. M.
,
1993
, “
Incremental Kinematics for Finite Element Applications
,”
Int. J. for Num. Meth. in Engng.
, Vol.
36
, pp.
3937
3956
.
27.
Rice, J. R., 1996. Private Communication to Z. P. Bazˇant.
28.
Sidoroff
F.
,
1974
, “
Un mode`le viscoe´lastique nonline´aire avec configuration interme´diaire
,”
J. de Me´canique
, Vol.
13
, pp.
679
713
.
29.
Sto¨ren
S.
, and
Rice
J. R.
,
1975
, “
Localized Necking in Thin Sheets
,”
J. of the Mechanics and Physics of Solids
, Vol.
23
, pp.
421
441
.
This content is only available via PDF.
You do not currently have access to this content.