Using an internal-variable formalism as a starting point, we describe the viscoelastic complement of a previously-developed viscoplasticity formulation of the complete potential structure type. It is mainly motivated by experimental evidence for the presence of rate/time effects in the so-called quasilinear, reversible, material response range. Several possible generalizations are described, in the general format of hereditary-integral representations for nonequilibrium, stress-type, state variables, both for isotropic as well as anisotropic materials. In particular, thorough discussions are given on the important issues of thermodynamic admissibility requirements for such general descriptions, resulting in a set of explicit mathematical constraints on the associated kernel (relaxation and creep compliance) functions. In addition, a number of explicit, integrated forms are derived, under stress and strain control to facilitate the parametric and qualitative response characteristic studies reported here, as well as to help identify critical factors in the actual experimental characterizations from test data that will be reported in Part II.

1.
Arnold, S. M., and Saleeb, A. F., 1994, “On the Thermodynamic Framework of Generalized Coupled Thermoelastic Viscoplastic—Damage Modeling,” Int. J. Plasticity, 10, No. 3, pp. 263–278, or NASA TM-105349, 1991.
2.
Arnold
,
S. M.
,
Saleeb
,
A. F.
, and
Wilt
,
T. E.
,
1995
, “
A Modeling Investigation of Thermal and Strain Induced Recovery and Nonlinear Hardening in Potential Based Viscoplasticity
,”
ASME J. Eng. Mater. Technol.
,
117
, No.
2
, pp.
157
167
, or NASA TM-106122, 1993.
3.
Lubliner
,
J.
,
1972
, “
On the Thermodynamic Foundations of Nonlinear Solid Mechanics
,”
Int. J. Nonlinear Mech.
,
7
, p.
728
728
.
4.
Lemaitre, J., and Chaboche, J. L., 1990, Mechanics of Solid Materials, Cambridge University Press, New York.
5.
Arnold, S. M., Saleeb, A. F., and Castelli, M. G., 1996, “A Fully Associative, Nonlinear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices,” Life Prediction Methodology for Titanium Matrix Composites, ASTM STP 1253, Johnson, W. S., Larsen, J. M., and Cox, B. N., eds., or NASA TM-106609, 1994.
6.
Arnold, S. M. Saleeb, A. F., and Castelli, M. G., 1995, “A Fully Associative, Nonisothermal, Nonlinear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices,” Thermomechanical Fatigue Behavior of Materials: Second Volume, ASTM STP 1263, M. J. Verrilli and M. G. Castelli, eds., Philadelphia, or NASA TM-106926, 1994.
7.
Christensen, R., 1971, Theory of Viscoelasticity, Academic Press, New York.
8.
Rabotnov, Y. N., 1980, Elements of Hereditary Solid Mechanics, Mir Publishers, Moscow.
9.
Arnold
,
S. M.
,
Saleeb
,
A. F.
, and
Castelli
,
M. G.
,
2001
, “
A General Time Dependent Constitutive Model: Part II—Application to A Titanium Alloy
,”
ASME J. Eng. Mater. Technol.
,
123
, pp.
65
73
.
10.
Flu¨gge, W., 1975, Viscoelasticity, 2nd revised ed., Springer-Verlag, New York.
11.
Tschoegl, N. W., 1989, The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin.
12.
Majors, P. S., and Krempl, E., 1991, “Recovery of State Formulation for Viscoplasticity Theory Based on Overstress,” High Temperature Constitutive Modeling and Application, Freed, A. D., and Walker, K. P., eds., ASME, AMD Vol. 121, pp. 235–250.
13.
Onat, E. T., and Fardshisheh, F., 1972, “Representation of Creep of Metals,” ORNL TM-4783, Oak Ridge National Laboratory, Oak Ridge, TN.
14.
Saleeb
,
A. F.
, and
Wilt
,
T. E.
,
1993
, “
Analysis of the Anisotropic Viscoplastic-Damage Response of Composite Laminates-Continuum Basis and Computational Algorithms
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
1629
1660
.
15.
Saleeb, A. F., and Arnold, S. M., 1997, “A General Reversible Hereditary Constitutive Model: Part I: Theoretical Developments,” NASA TM 107493.
16.
Friedel, J., 1964, Dislocations, Oxford University Press, New York.
17.
Meyers, M. A., and Chawla, K. K., 1994, Mechanical Metallurgy, Prentice-Hall, Englewood Cliffs, NJ.
18.
Burton
,
B.
,
1989
, “
Creep Transients after Stress Changes
,”
J. Mater Sci. Technol.
,
5
, pp.
1005
1012
.
19.
Hasegawa
,
T.
, and
Yakou
,
T.
,
1982
, “
Length Changes and Stress Effects During Recovery and Deformed Aluminum
,”
Acta Metall.
,
30
, pp.
235
243
.
20.
Pedersen
,
O. B.
,
Brown
,
L. M.
, and
Stobbs
,
W. M.
,
1981
, “
The Bauschinger Effect in Copper
,”
Acta Metall.
,
29
, pp.
1843
1850
.
21.
Truesdell, C., and Noll, W., 1965, “The Nonlinear Field Theories,” Handbook of Physics, Vol. III/3, Flugge, S., ed., Springer, Berlin.
22.
Miller, A. K., 1987, Unified Constitutive Equations For Creep and Plasticity, Elsevier Applied Science.
23.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus-A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
, No.
5
, pp.
741
748
.
24.
Koeller
,
R. C.
,
1984
, “
Application of Fractal Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
, No.
2
, pp.
299
307
.
25.
Leaderman, H., 1943, Elastic Properties of Filamentous Materials, The Textile Foundation, Washington, D.C.
26.
Roscoe
,
R.
,
1950
, “
Mechanical Models for Representation of Viscoelastic Properties
,”
J. Appl. Phys.
,
1
, pp.
171
173
.
27.
Matteo
,
C. L.
, and
Cerveny
,
S.
,
1996
, “
A Nonlinear Method for Calculation of the Loss Tangent Distribution Function
,”
Rheol. Acta
,
35
, pp.
315
320
.
28.
Waterman
,
H. A.
,
1977
, “
Relations Between Loss Angles in Isotropic Linear Viscoelastic Materials
,”
Rheol. Acta
,
16
, pp.
31
42
.
29.
Lubliner
,
J.
,
1985
, “
A Model of Rubber Viscoelasticity
,”
Mech. Res. Commun.
,
12
, pp.
93
99
.
30.
Nemat-Nasser
,
S.
,
1979
, “
Decomposition of Strain Measures and Their Rates in Finite Deformation Elastoplasticity
,”
Int. J. Solids Struct.
,
15
, pp.
155
166
.
31.
Breuer
,
S.
, and
Onat
,
E.
,
1962
, “
On Uniqueness in Linear Viscoelasticity
,”
Q. J. Mech. Appl. Math.
,
XIX
, No.
4
, pp.
355
359
.
32.
Rivera
,
J. E.
,
1994
, “
Asymptotic Behavior in Linear Viscoelasticity
,”
Q. Appl. Math
,
LII
, No.
4
, pp.
629
648
.
33.
Akyildis
,
F.
,
Jones
,
R. S.
, and
Walters
,
K.
,
1990
, “
On the Spring-Dashpot Representation of Linear Viscoelastic Behavior
,”
Rheol. Acta
,
29
, pp.
482
484
.
34.
Hazanov, S., 1991, “On One Dynamic Model for Composite Materials,” Constitutive Laws for Engineering Materials, Desai, C., et al., eds., ASME Press, Tucson, AZ, pp. 275–278.
35.
Lighthill, M. J., 1958, Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge.
36.
Friedlander, F. G., 1982, Introduction to the Theory of Distributions, Cambridge University Press, Cambridge.
37.
Starr, P. V., 1968, Physics of Negative Viscosity Phenomena, McGraw-Hill, New York.
38.
Pazy, A., 1983, “Semigroups of Linear Operators and Applications to Partial Differential Equations,” Appl. Math Science, 44 , Springer-Verlag, New York.
39.
Richtmyer, R. D., and Morton, K. W., 1967, Difference Methods for Initial Value Problems, 2nd ed., Wiley, NY.
40.
Gear, C. W., 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs.
41.
Fortin, M., and Glowinski, R., 1983, Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems, North-Holland, Amsterdam.
42.
Shames, I. H., and Cozzarelli, F. A., 1992, Elastic and Inelastic Stress Analysis, Prentice-Hall, Englewood Cliffs, NJ.
43.
Saleeb, A. F., Gendy, A. S., and Wilt, T. E., 1997, “Parameter Estimation for Viscoplastic Material Modeling,” in Physics and Process Modeling (PPM) and Other Propulsion R&T, Vol. I: Materials Processing Characterization and Modeling; Lifting Models, NASA CP10193, paper 14.
You do not currently have access to this content.