Thermal damage of SiC particulate-reinforced aluminum composites (MMCs) caused by laser thermal shock was investigated. The damage was induced by a combination of laser beam thermal shock and mechanical loads. The MMCs have two kinds of particle distributions, one is uniform and another is heterogeneous. The damage initiation, crack propagation, as well as the failure evolution, were observed. A damage parameter was defined and it was tested. One found that the damage mechanism was very different for crack initiation and crack propagation and for MMCs with different spatial particle distributions. The mechanism of MMCs failure is discussed by the ideas of shear stress transfer between matrix and reinforcement. The discussion can explain the distinct mechanism of damage and failure in SiC particulate-reinforced aluminum composites.

1.
Kang
,
C. S.
,
Maeda
,
K.
,
Wang
,
K. J.
, and
Wakashima
,
K.
,
1998
, “
Dynamic Young’s Modulus and Internal Friction in Particulate SiC/Al Composites
,”
Acta Mater.
,
46
, pp.
1209
1220
.
2.
Prangnell
,
P. B.
,
Barnes
,
S. J.
,
Roberts
,
S. M.
, and
Withers
,
P. J.
,
1996
, “
The Effect of Particle Distribution on Damage Formation in Particulate Reinforced Metal Matrix Composites Deformed in Compression
,”
Mater. Sci. Eng., A
,
220
, pp.
41
56
.
3.
El-Nasr
,
A. B. A.
, et al.
,
1996
, “
High Temperature Rupture of an SiC Particulate Reinforced Al Composite under Multiaxial Stress States
,”
Mater. Sci. Eng., A
,
214
, pp.
33
41
.
4.
Hwu
,
B. K.
,
Lin
,
S. J.
, and
Jahn
,
M. T.
,
1996
, “
Effects of Process Parameters on the Properties of Squeeze-Cast SiCp-6061 Al Metal Matrix Composite
,”
Mater. Sci. Eng., A
,
207
, pp.
135
141
.
5.
Somerday
,
B. P.
,
Leng
,
Y.
, and
Gangloff
,
R. P.
,
1995
, “
Elevated Temperature Fracture of Particulate-Reinforced Aluminum Part I: Fracture Toughness
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
, pp.
565
582
.
6.
Kagawa
,
Y.
,
1997
, “
Thermal Shock Damage in a Two-Dimensional SiC/SiC Composite Reinforced with Woven SiC Fibers
,”
Compos. Sci. Technol.
,
57
, pp.
607
611
.
7.
Zhou
,
Y. C.
,
Duan
,
Z. P.
, and
Xie
,
B. M.
,
1997
, “
Long Pulsed Laser Induced Reverse Bulging and Plugging
,”
Int. J. Eng. Sci.
,
35
, pp.
613
621
.
8.
Zhou
,
Y. C.
,
Duan
,
Z. P.
, and
Yang
,
Q. B.
,
1998
, “
Failure of SiC particulate reinforced metal matrix composites induced by laser thermal shock
,”
Metall. Mater. Trans. A
,
79
, pp.
685
692
.
9.
Zhou
,
Y. C.
,
Duan
,
Z. P.
, and
Yang
,
Q. B.
,
1999
, “
A Thermal-Elastic Analysis on Laser-Induced Reverse Bulging and Plugging in Circular Brass Foil
,”
Int. J. Solids Struct.
,
36
, pp.
363
389
.
10.
Sciences and Technology Commission of The Department of Aviation Industry, 1990, Handbooks of Stresses Concentration Coefficients (in Chinese), The Press of High Education of China, pp. 49–50.
11.
Davidson
,
D. L.
,
1991
, “
The Effect of Particulate SiC on Fatigue Crack Growth in a Cast-Extruded Aluminum Alloy Composite
,”
Metall. Trans. A
,
22
, pp.
97
112
.
12.
Park
,
J.
,
Lenshek
,
D. X.
, and
Povirk
,
G. L.
,
1997
, “
Reinforcement Redistribution in Al-SiC Composites under Cyclic Deformations
,”
Acta Mater.
,
45
, pp.
1351
1364
.
13.
Nardone
,
V. C.
, and
Prewo
,
K. M.
,
1986
, “
The Strength of the Particle Reinforced Metal Matrix Composite
,”
Scr. Metall.
,
20
, pp.
43
48
.
14.
Arsenault
,
R. J.
,
Wang
,
L.
, and
Feng
,
C. R.
,
1991
, “
Strengthening of Composites due to Microstructural Changes in the Matrix
,”
Acta Metall. Mater.
,
39
, pp.
47
57
.
15.
Wang, C. Q., Huang, Q. G., and Duan, Z. P., 1996, “Tensile Properties of LF6 Aluminum Alloy at High Temperature,” National Conference on the Thermal and Mechanical Effect of Materials Induced by Laser Beam (in Chinese), Ningbao, Zhejiang, pp. 202–206.
16.
Hsueh
,
C. H.
,
Young
,
R. J.
,
Yang
,
X.
, and
Becher
,
P. F.
,
1997
, “
Stress Transfer in a Model Composite Containing a Single Embeded Fiber
,”
Acta Mater.
,
45
, pp.
1469
1476
.
17.
Wang, R., Huang, K. Z., and Zhu, Z. X., 1988, Advance in Plastic Mechanics (in Chinese), The Press of Chinese Railway, pp. 119–143.
18.
Nan
,
C. W.
, and
Clarke
,
D. R.
,
1996
, “
The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites
,”
Acta Mater.
,
44
, pp.
3801
3811
.
19.
Kiser
,
M. T.
,
Zok
,
F. W.
, and
Wilkinson
,
D. S.
,
1996
, “
Plastic Flow and Fracture of a Particulate Metal Matrix Composite
,”
Acta Mater.
,
44
,
3465
3476
.
20.
Cai
,
H.
, and
Bao
,
G.
,
1998
, “
Crack bridging in functionally graded coatings
,”
Int. J. Solids Struct.
,
35
, pp.
701
717
.
21.
Shen
,
Y. L.
,
Finot
,
M.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1994
, “
Effective Elastic Response of Two-Phase Composites
,”
Acta Metall. Mater.
,
42
, pp.
77
97
.
22.
Mott
,
N. F.
,
1948
, “
Brittle Fracture in Mild-Steel Plates-II
,”
Engineering
,
165
, pp.
16
18
.
23.
Erdogan, F., 1968, “Crack-Propagation Theories,” Fracture, An Advanced Treatise, Vol. II, Liebowitz, H., ed., Academic Press, New York and London, pp. 498–590.
24.
Zhou, Y. C., Zhu, Z. M., Duan, Z. P., and Yang, Q. B., 1999, “Rheological-Thermal Fracture by Laser Beam,” Proc. IUTAM Symp. On Rheology of Bodies with Defects, Wang R., ed., Kluwer Academic Publishers, pp. 121–132.
You do not currently have access to this content.